
SQL

Lukas Hager

2024-05-06

Learning Objectives

▶ Be able to use python to connect to a database
▶ Understand the basics of SQL syntax and how to query data

SQL Background

Pronounciation1

“Sequel”, not “Ess-Queue-Ell”

1Some of this material is based off of material created by Dr. Konstantin Golyaev.

https://kgolyaev.com/

Background

▶ Structured Query Language
▶ Used to extract data from relational databases
▶ Core concepts:

▶ Record (table row)
▶ Table column
▶ Table – collection of rows and columns

Tables

▶ Any table operation produces another table as a result
▶ A record is a collection of key-value pairs

▶ Think of this like a row in an excel spreadsheet
▶ “Name”: “John”, “Salary”: 50, …

▶ A table is a collection of records
▶ “Name”: “John”, “Salary”: 50, …,
▶ “Name”: “Mary”, “Salary”: 55, …

▶ pandas treats tables as DataFrames

SQL in Pipelines

▶ Most large companies and research groups store data in relational
databases

▶ The first step of any project is to define the data you need and
query it from SQL

▶ Once you have the data, you can clean and model using pandas etc.
▶ This first querying step is key!

Why?

Why should you use databases instead of CSVs?

Answer (per Luke2 Wylie3)

1. Databases are tools built specifically for using and sharing data in a
matched “state” - as soon as someone else needs to use your data at
the same time as you, and even keeping track of changes and
mutations to the transaction, a CSV is useless.

2. As soon as you start mutating data and creating multiple datasets
while refusing to use a database, you resign yourself to the special
hell that is juggling multiple CSVs. You will inevitably lose data.

2Senior Data Engineer/Data God at Microsoft
3My neighbor

Accessing a Database in Python

sqlalchemy

▶ There are lots of ways to connect to a database
▶ Hopefully the group that you’re working with already has an in-house

solution
▶ We’ll work with a very simple version (no authentication, etc.)
▶ Connecting to a sqlite database using sqlalchemy

create_engine

▶ We have a .db file called auctions.db that contains data on
bidding for 500 North Face clothing items on ShopGoodwill.com4

▶ To connect to it, we have to create a sqlalchemy engine:

import sqlalchemy
from sqlalchemy import create_engine

path = '/Users/hlukas/git/personal_website/static/econ-481/data/auctions.db'
engine = create_engine(f'sqlite:///{path}')

4I’m using data scraped from this site in my general exam paper, so let me know if
you see anything interesting in it!

https://shopgoodwill.com/home

create_engine Argument

▶ Note that at the beginning, we tell sqlalchemy what sort of
database we’re connecting to

▶ We then pass three / characters before the database location.

Listing Tables

▶ Databases contain multiple tables
▶ We want to know what they are

from sqlalchemy import inspect

inspector = inspect(engine)
inspector.get_table_names()

['bids', 'items']

So we have two tables, named “bids” and “items”

Listing Tables

▶ Databases contain multiple tables
▶ We want to know what they are

from sqlalchemy import inspect

inspector = inspect(engine)
inspector.get_table_names()

['bids', 'items']

So we have two tables, named “bids” and “items”

Querying Data

▶ We’ll begin by working with SQL in a “traditional” sense, where we
just write queries instead of leveraging the python package

▶ Libraries like sqlalchemy or pyspark have methods to take the
place of querying

▶ These are a little easier to learn once we get the basics of writing a
query

▶ Query: a letter to the database telling it what we want

Writing a Query Class
To assess the output of our queries, we’re going to write a class that will
run our query against the database and return a DataFrame as the table
output.

1 import pandas as pd
2 from sqlalchemy.orm import Session
3

4 class DataBase:
5 def __init__(self, loc: str, db_type: str = "sqlite") -> None:
6 """Initialize the class and connect to the database"""
7 self.loc = loc
8 self.db_type = db_type
9 self.engine = create_engine(f'{self.db_type}:///{self.loc}')

10 def query(self, q: str) -> pd.DataFrame:
11 """Run a query against the database and return a DataFrame"""
12 with Session(self.engine) as session:
13 df = pd.read_sql(q, session.bind)
14 return(df)
15

16 auctions = DataBase(path)

Aside: Why a Class?

▶ Why is a class better than a function here?

▶ A function would either require us to pass the engine as an
argument or reference a global variable (not good)

▶ In the class, all of our queries will share the same engine
▶ Logical flow – we create run queries against only one database at a

time

Aside: Why a Class?

▶ Why is a class better than a function here?

▶ A function would either require us to pass the engine as an
argument or reference a global variable (not good)

▶ In the class, all of our queries will share the same engine
▶ Logical flow – we create run queries against only one database at a

time

Queries

Query Syntax

▶ SELECT comma-separated list of columns
▶ FROM Table1 JOIN Table2 … JOIN TableN
▶ WHERE Condition1 AND … AND ConditionM
▶ GROUP BY comma-separated list of grouping columns
▶ [HAVING] Condition1 AND … AND ConditionK
▶ [ORDER BY] comma-separated list of sorting cols
▶ [LIMIT] number of rows to return

SELECT * Statement5

q = 'select * from bids'
print(auctions.query(q).head())

index bidLogId itemId itemPrice bidAmount \
0 50 0 178348858 9.99 20.0
1 51 0 178348858 13.00 12.0
2 52 0 178348858 21.00 23.0
3 53 0 178348858 24.00 35.0
4 54 0 178348858 36.00 48.0

bidTime quantity bidIPAddress adCode serverIP \
0 2023-09-18 16:11:04.587000 1 None None None
1 2023-09-22 14:22:06.700000 1 None None None
2 2023-09-23 12:35:18.157000 1 None None None
3 2023-09-23 18:23:27.993000 1 None None None
4 2023-09-23 18:37:47.213000 1 None None None

retracted bidderName highBidderName isBuyerHighBidder isLoggedInBuyer
0 0 a****9 a****9 0 0
1 0 S****p a****9 0 0
2 0 H****2 H****2 0 0
3 0 b****e b****e 0 0
4 0 t****5 t****5 0 0

5Canonically, SQL queries are all uppercase, but there’s no real benefit to that
outside of straining your pinky in my opinion.

SELECT Columns Statement

q = 'select itemid, description, isbuynowused from items'
print(auctions.query(q).head())

itemId description isBuyNowUsed
0 179353985 <p>Description:</p>\n<p>Women... 0
1 177087535 <p>Details & Condition</p... 0
2 180876361 <p>The North Face Womens Pink Long Sleeve Mock... 0
3 177763109 <p>
</p><span class="ql-size-large"... 0
4 179660197 <p>Title: The North Face Mens Red Flat ... 0

JOIN Statements
Recall our discussion on joining in pandas – these are SQL-style joins,
and SQL has the same types.

q = """
select items.itemid, items.description, bids.biddername, bids.bidamount, bids.bidtime
from items
left join bids
on items.itemid = bids.itemid
"""
print(auctions.query(q).head())

itemId description bidderName \
0 179353985 <p>Description:</p>\n<p>Women... None
1 177087535 <p>Details & Condition</p... None
2 180876361 <p>The North Face Womens Pink Long Sleeve Mock... B****4
3 177763109 <p>
</p><span class="ql-size-large"... n****m
4 177763109 <p>
</p><span class="ql-size-large"... N****0

bidAmount bidTime
0 NaN None
1 NaN None
2 19.99 2023-10-18 05:54:55.327000
3 10.00 2023-09-17 11:52:27.447000
4 14.00 2023-09-17 17:33:48.517000

JOIN Aliases
Should this run?

q = """
select itemid, description, biddername, bidamount, bidtime
from items
left join bids
on items.itemid = bids.itemid
"""
print(auctions.query(q).head())

OperationalError: (sqlite3.OperationalError) ambiguous column name: itemid
[SQL:
select itemid, description, biddername, bidamount, bidtime
from items
left join bids
on items.itemid = bids.itemid
]
(Background on this error at: https://sqlalche.me/e/20/e3q8)

JOIN Renaming Tables
It’s often convenient to rename tables in joins to make your query less
verbose (potentially at the cost of readability)

q = """
select i.itemid, i.description, b.biddername, b.bidamount, b.bidtime
from items as i
left join bids as b
on i.itemid = b.itemid
"""
print(auctions.query(q).head())

itemId description bidderName \
0 179353985 <p>Description:</p>\n<p>Women... None
1 177087535 <p>Details & Condition</p... None
2 180876361 <p>The North Face Womens Pink Long Sleeve Mock... B****4
3 177763109 <p>
</p><span class="ql-size-large"... n****m
4 177763109 <p>
</p><span class="ql-size-large"... N****0

bidAmount bidTime
0 NaN None
1 NaN None
2 19.99 2023-10-18 05:54:55.327000
3 10.00 2023-09-17 11:52:27.447000
4 14.00 2023-09-17 17:33:48.517000

Exercise: Joins

For each of the join types supported in sqlite (left, inner, cross),
perform the join on the two tables and report the number of observations
in the resulting join.

Solutions: Joins

join_types = ['inner', 'left', 'cross']
queries = [

f"""select count(*) as n
from items as i
{join} join bids as b
on i.itemid = b.itemid""" for join in join_types

]
[auctions.query(q)['n'].item() for q in queries]

[551, 879, 551]

WHERE
q = """
select i.itemid, i.description, b.biddername, b.bidamount, b.bidtime
from items as i
left join bids as b
on i.itemid = b.itemid
where b.bidamount is not null
"""
print(auctions.query(q).head())

itemId description bidderName \
0 178348858 <p>
</p><span class="ql-size-large"... a****9
1 178348858 <p>
</p><span class="ql-size-large"... S****p
2 178348858 <p>
</p><span class="ql-size-large"... H****2
3 178348858 <p>
</p><span class="ql-size-large"... b****e
4 178348858 <p>
</p><span class="ql-size-large"... t****5

bidAmount bidTime
0 20.0 2023-09-18 16:11:04.587000
1 12.0 2023-09-22 14:22:06.700000
2 23.0 2023-09-23 12:35:18.157000
3 35.0 2023-09-23 18:23:27.993000
4 48.0 2023-09-23 18:37:47.213000

WHERE With Multiple Conditions
q = """
select i.itemid, i.description, b.biddername, b.bidamount, b.bidtime
from items as i
left join bids as b
on i.itemid = b.itemid
where b.bidamount is not null and i.isbuynowused is false
"""
print(auctions.query(q).head())

itemId description bidderName \
0 180876361 <p>The North Face Womens Pink Long Sleeve Mock... B****4
1 177763109 <p>
</p><span class="ql-size-large"... n****m
2 177763109 <p>
</p><span class="ql-size-large"... N****0
3 177763109 <p>
</p><span class="ql-size-large"... M****y
4 177763109 <p>
</p><span class="ql-size-large"... M****y

bidAmount bidTime
0 19.99 2023-10-18 05:54:55.327000
1 10.00 2023-09-17 11:52:27.447000
2 14.00 2023-09-17 17:33:48.517000
3 15.00 2023-09-17 18:27:00.087000
4 15.00 2023-09-17 18:33:37.233000

GROUP BY
The same as .groupby() in pandas – add aggregating functions to the
SELECT clause

q = """
select i.itemid, count(distinct b.biddername) as n_bidders
from items as i
left join bids as b
on i.itemid = b.itemid
where b.bidamount is not null and i.isbuynowused is false
group by i.itemid
"""
print(auctions.query(q).head())

itemId n_bidders
0 165561698 1
1 170983900 1
2 172998011 2
3 173907435 1
4 174445924 3

Aside: COUNT
We can also just count observations without a grouping:

q = """
select count(*) from items
"""
print(auctions.query(q).head())

count(*)
0 500

Or count the distinct number of something without a grouping:

q = """
select count(distinct biddername) from bids
"""
print(auctions.query(q).head())

count(distinct biddername)
0 284

Aside: COUNT
We can also just count observations without a grouping:

q = """
select count(*) from items
"""
print(auctions.query(q).head())

count(*)
0 500

Or count the distinct number of something without a grouping:

q = """
select count(distinct biddername) from bids
"""
print(auctions.query(q).head())

count(distinct biddername)
0 284

Exercise: MIN and MAX

In SQL, MIN and MAX are aggregating functions that work the same way
as COUNT. Use them to create a table of the number of bids each bidder
submitted for each item, as well as their largest and smallest bid.

Exercise: MIN and MAX

q = """
select itemid, biddername, count(*) as n_bids, min(bidamount) as min_bid,
max(bidamount) as max_bid
from bids
group by itemid, biddername
"""
print(auctions.query(q).head())

itemId bidderName n_bids min_bid max_bid
0 165561698 n****4 1 9.91 9.91
1 170983900 c****3 1 9.91 9.91
2 172998011 A****e 1 9.91 9.91
3 172998011 J****m 1 9.91 9.91
4 173907435 M****n 1 14.99 14.99

Filter on Aggregate Function Value
What if we only care about bid distribution for a bidder when their
largest bid is more than $20?

q = """
select itemid, biddername, count(*) as n_bids, min(bidamount) as min_bid,
max(bidamount) as max_bid
from bids
group by itemid, biddername
where max_bid > 20
"""
print(auctions.query(q).head())

OperationalError: (sqlite3.OperationalError) near "where": syntax error
[SQL:
select itemid, biddername, count(*) as n_bids, min(bidamount) as min_bid,
max(bidamount) as max_bid
from bids
group by itemid, biddername
where max_bid > 20
]
(Background on this error at: https://sqlalche.me/e/20/e3q8)

HAVING
If we want to filter on the aggregate function value, we need to use
HAVING instead of WHERE

q = """
select itemid, biddername, count(*) as n_bids, min(bidamount) as min_bid,
max(bidamount) as max_bid
from bids
group by itemid, biddername
having max_bid > 20
"""
print(auctions.query(q).head())

itemId bidderName n_bids min_bid max_bid
0 174767945 C****2 3 24.44 34.00
1 174767945 b****z 4 25.00 33.00
2 174871788 J****3 1 21.00 21.00
3 174871788 v****l 3 15.00 22.00
4 174901466 c****8 1 39.99 39.99

ORDER BY
Sorting works in an intuitive way

q = """
select itemid, biddername, count(*) as n_bids, min(bidamount) as min_bid,
max(bidamount) as max_bid
from bids
group by itemid, biddername
having max_bid > 20
order by max_bid desc, biddername
"""
print(auctions.query(q).head())

itemId bidderName n_bids min_bid max_bid
0 180573534 j****a 1 301.0 301.0
1 180573534 A****3 4 140.0 300.0
2 180601736 c****c 4 180.0 201.0
3 180601736 A****8 2 150.0 200.0
4 180601736 B****a 1 160.0 160.0

LIMIT

We’ve been asking for the head of our DataFrame to limit output – we
can do this directly in the query:

q = """
select itemid, biddername, count(*) as n_bids, min(bidamount) as min_bid,
max(bidamount) as max_bid
from bids
group by itemid, biddername
having max_bid > 20
order by max_bid desc, biddername
limit 1
"""
print(auctions.query(q))

itemId bidderName n_bids min_bid max_bid
0 180573534 j****a 1 301.0 301.0

Exercise: Bidder Participation

In our sample, how many bidders participate in multiple auctions? And
how many auctions do they participate in?

Solutions: Bidder Participation

q = """
select biddername, count(distinct itemid) as n_auctions
from bids
group by biddername
having n_auctions > 1
"""
bidder_participation = auctions.query(q)
print(bidder_participation.shape[0])

60

Solutions: Bidder Participation

We’ll see soon that we could also do this with a “subquery”

q = """
select count(*) from (

select biddername, count(distinct itemid) as n_auctions
from bids
group by biddername
having n_auctions > 1

) as a
"""
print(auctions.query(q))

count(*)
0 60

Solutions: Bidder Participation
import numpy as np
bidder_participation.hist(

bins = np.arange(
np.min(bidder_participation['n_auctions']),
np.max(bidder_participation['n_auctions'])+1

)
);

2 3 4 5 6 7 8 9
0

10

20

30

40

n_auctions

Window Functions

OVER

If we want to compute operations by group and assign it as a new
variable, we need to tell SQL how to organize the groups:

q = """
select itemid, min(bidamount) over (partition by itemid) as min_bid, itemprice
from bids
"""
print(auctions.query(q).head())

itemId min_bid itemPrice
0 165561698 9.91 9.91
1 170983900 9.91 9.91
2 172998011 9.91 9.91
3 172998011 9.91 9.91
4 173907435 14.99 14.99

LAG
Window functions are particularly useful if we need to lag data in SQL

q = """
select itemid,
min(bidamount) over (partition by itemid) as min_bid,
itemprice,
lag(itemprice) over (partition by itemid order by bidtime) as lagged_price
from bids
"""
print(auctions.query(q).head())

itemId min_bid itemPrice lagged_price
0 165561698 9.91 9.91 NaN
1 170983900 9.91 9.91 NaN
2 172998011 9.91 9.91 NaN
3 172998011 9.91 9.91 9.91
4 173907435 14.99 14.99 NaN

Creating Columns

String Concatenation
String concatenation in SQL is performed with ||

q = """
select title, itemid, title || " " || description as full_description
from items
"""
print(auctions.query(q).head())

title itemId \
0 Womens Size M The North Face Zip Up Jacket 179353985
1 The North Face Women's Size 4 Tan/Khaki Lightw... 177087535
2 The North Face Womens Pink Long Sleeve Mock Ne... 180876361
3 The North Face Women's Medium Sweaters/Shirt L... 177763109
4 The North Face Mens Red Flat Front Slash Pocke... 179660197

full_description
0 Womens Size M The North Face Zip Up Jacket <p>...
1 The North Face Women's Size 4 Tan/Khaki Lightw...
2 The North Face Womens Pink Long Sleeve Mock Ne...
3 The North Face Women's Medium Sweaters/Shirt L...
4 The North Face Mens Red Flat Front Slash Pocke...

Arithmetic

q = """
select itemid, currentprice, shipping,
currentprice + shipping as final_price
from items
"""
print(auctions.query(q).head())

itemId currentPrice shipping final_price
0 179353985 10.99 0 10.99
1 177087535 24.98 0 24.98
2 180876361 19.99 0 19.99
3 177763109 15.00 0 15.00
4 179660197 12.99 0 12.99

CASE WHEN

SQL’s if-else statement (similar to R’s ifelse or case_when verbs)

q = """
select itemid, currentprice, shipping,
currentprice + case when shipping == 0 then 5 else shipping end as final_price
from items
order by shipping desc
"""
print(auctions.query(q).head())

itemId currentPrice shipping final_price
0 176705357 19.99 2 21.99
1 179025543 14.99 2 16.99
2 179353985 10.99 0 15.99
3 177087535 24.98 0 29.98
4 180876361 19.99 0 24.99

More Cases
We can use LIKE to pattern match – % means zero, one, or multiple
characters (this is a bad application – why?)

q = """
select itemid, currentprice,
case when lower(description) like "%small%" then "small"
when lower(description) like "%medium%" then "medium"
when lower(description) like "%large%" then "large"
else null end as size
from items
where size is not null
"""
print(auctions.query(q).head())

itemId currentPrice size
0 177087535 24.98 small
1 180876361 19.99 small
2 177763109 15.00 large
3 179660197 12.99 small
4 176601978 9.99 large

Database Operations

Adding to our Class

▶ SQL doesn’t just query data – it also allows us to change the
database

▶ We can add tables (temporary or otherwise), for example
▶ We want to be able to also run statements that don’t just return

data, but perform operations on our database
▶ Let’s add an execute method that facilitates this for our engine

New Class
from sqlalchemy import text

class DataBase:
def __init__(self, loc: str, db_type: str = "sqlite") -> None:

"""Initialize the class and connect to the database"""
self.loc = loc
self.db_type = db_type
self.engine = create_engine(f'{self.db_type}:///{self.loc}')

def query(self, q: str) -> pd.DataFrame:
"""Run a query against the database and return a DataFrame"""
with Session(self.engine) as session:

df = pd.read_sql(q, session.bind)
return(df)

def execute(self, q: str) -> None:
"""Execute statement on the database"""
with self.engine.connect() as conn:

conn.execute(text(q))

auctions = DataBase(path)

Creating a Joined Table
If we want to create a new table that contains only observations with
bids where the buy now option wasn’t used, we can execute a statement
to do so.

q = """
create table full_data as
select i.*, b.*
from items as i
inner join bids as b
on i.itemid = b.itemid
where i.isbuynowused = 0
"""
auctions.execute("drop table if exists full_data")
auctions.execute(q)
print(auctions.query("select * from full_data limit 1"))

index buyerCountry buyerCountryCode buyerState buyerStreet buyerZip \
0 12100 None US None None None

categoryParentList defaultShippingResults \
0 10|Clothing|27|Women's Clothing|154|Outerwear None

description \
0 <p>The North Face Womens Pink Long Sleeve Mock...

imageServer ... \
0 https://shopgoodwillimages.azureedge.net/produ... ...

bidTime quantity:1 bidIPAddress adCode serverIP \
0 2023-10-18 05:54:55.327000 1 None None None

retracted bidderName highBidderName isBuyerHighBidder isLoggedInBuyer
0 0 B****4 B****4 0 0

[1 rows x 100 columns]

Dropping Tables

Why do we need the first statement? Because SQL won’t let us create a
table that already has a given name

q = """
create table full_data as
select * from items
"""
auctions.execute(q)

OperationalError: (sqlite3.OperationalError) table full_data already exists
[SQL:
create table full_data as
select * from items
]
(Background on this error at: https://sqlalche.me/e/20/e3q8)

Temporary Tables Creation
q = """
create temp table full_data as
select i.*, b.*
from items as i
inner join bids as b
on i.itemid = b.itemid
where i.isbuynowused = 0
"""
auctions.execute("drop table if exists full_data")
auctions.execute(q)
print(auctions.query("select * from full_data limit 1"))

index buyerCountry buyerCountryCode buyerState buyerStreet buyerZip \
0 12100 None US None None None

categoryParentList defaultShippingResults \
0 10|Clothing|27|Women's Clothing|154|Outerwear None

description \
0 <p>The North Face Womens Pink Long Sleeve Mock...

imageServer ... \
0 https://shopgoodwillimages.azureedge.net/produ... ...

bidTime quantity:1 bidIPAddress adCode serverIP \
0 2023-10-18 05:54:55.327000 1 None None None

retracted bidderName highBidderName isBuyerHighBidder isLoggedInBuyer
0 0 B****4 B****4 0 0

[1 rows x 100 columns]

Rerunning

auctions = DataBase(path)
print(auctions.query("select * from full_data limit 1"))

OperationalError: (sqlite3.OperationalError) no such table: full_data
[SQL: select * from full_data limit 1]
(Background on this error at: https://sqlalche.me/e/20/e3q8)

▶ Temporary tables get dropped when a session or connection is closed
▶ This is desirable if these are just intermediate tables (they won’t

clog up your database)
▶ This is undesirable if they take a lot of time to compute (maybe just

save them as normal tables)

Rerunning

auctions = DataBase(path)
print(auctions.query("select * from full_data limit 1"))

OperationalError: (sqlite3.OperationalError) no such table: full_data
[SQL: select * from full_data limit 1]
(Background on this error at: https://sqlalche.me/e/20/e3q8)

▶ Temporary tables get dropped when a session or connection is closed
▶ This is desirable if these are just intermediate tables (they won’t

clog up your database)
▶ This is undesirable if they take a lot of time to compute (maybe just

save them as normal tables)

Exercise: Temporary Tables

For each bid, express its time as relative to when the auction ended
(endtime). That means that if an auction was 10 hours long (as
measured by endtime - starttime) and a bid was placed an hour before
the auction ended, it would have a normalized timestamp of .1. Plot this
distribution as a histogram.
Hint: to compute the difference in time between two dates, use
julianday(time1)-julianday(time2).

Solutions: Temporary Tables

q = """
create temp table auction_length as
select itemid, starttime, endtime,
julianday(endtime) - julianday(starttime) as length
from items
"""
auctions.execute("drop table if exists auction_length")
auctions.execute(q)
print(auctions.query('select * from auction_length limit 4'))

itemId startTime endTime length
0 179353985 2023-09-28 17:00:54.000000 2023-10-02 18:14:00.000000 4.050764
1 177087535 2023-09-04 22:54:00.000000 2023-09-12 19:46:00.000000 7.869444
2 180876361 2023-10-14 03:18:40.000000 2023-10-19 04:04:40.000000 5.031944
3 177763109 2023-09-12 08:22:45.000000 2023-09-17 18:34:00.000000 5.424479

Solutions: Temporary Tables
q = """
select b.itemid, b.bidtime, a.starttime, a.endtime,
(julianday(endtime)-julianday(bidtime)) / a.length as time_norm
from bids as b
inner join auction_length as a
on b.itemid=a.itemid
"""
df = auctions.query(q)
print(df.head())

itemId bidTime startTime \
0 178348858 2023-09-18 16:11:04.587000 2023-09-18 14:29:56.000000
1 178348858 2023-09-22 14:22:06.700000 2023-09-18 14:29:56.000000
2 178348858 2023-09-23 12:35:18.157000 2023-09-18 14:29:56.000000
3 178348858 2023-09-23 18:23:27.993000 2023-09-18 14:29:56.000000
4 178348858 2023-09-23 18:37:47.213000 2023-09-18 14:29:56.000000

endTime time_norm
0 2023-09-23 18:39:00.000000 0.986422
1 2023-09-23 18:39:00.000000 0.227799
2 2023-09-23 18:39:00.000000 0.048825
3 2023-09-23 18:39:00.000000 0.002085
4 2023-09-23 18:39:00.000000 0.000163

Solutions: Temporary Tables
df['time_norm'].hist(bins=20)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

What does this tell us? Are these results surprising?

Solutions: Temporary Tables
df['time_norm'].hist(bins=20)

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

What does this tell us? Are these results surprising?

Subqueries

Alternative Solution
q = """
select b.itemid, b.bidtime, a.starttime, a.endtime,
(julianday(endtime)-julianday(bidtime)) / a.length as time_norm
from bids as b
inner join (

select itemid, starttime, endtime,
julianday(endtime) - julianday(starttime) as length
from items

) as a
on b.itemid=a.itemid
"""
df = auctions.query(q)
print(df.head(2))

itemId bidTime starttime \
0 178348858 2023-09-18 16:11:04.587000 2023-09-18 14:29:56.000000
1 178348858 2023-09-22 14:22:06.700000 2023-09-18 14:29:56.000000

endtime time_norm
0 2023-09-23 18:39:00.000000 0.986422
1 2023-09-23 18:39:00.000000 0.227799

Better Approach
Using WITH improves readability

q = """
with a as (

select itemid, starttime, endtime,
julianday(endtime) - julianday(starttime) as length
from items

)
select b.itemid, b.bidtime, a.starttime, a.endtime,
(julianday(endtime)-julianday(bidtime)) / a.length as time_norm
from bids as b
inner join a
on b.itemid=a.itemid
"""
df = auctions.query(q)
print(df.head(2))

itemId bidTime starttime \
0 178348858 2023-09-18 16:11:04.587000 2023-09-18 14:29:56.000000
1 178348858 2023-09-22 14:22:06.700000 2023-09-18 14:29:56.000000

endtime time_norm
0 2023-09-23 18:39:00.000000 0.986422
1 2023-09-23 18:39:00.000000 0.227799

Do As I Say, Not As I Do

Writing Readable SQL Queries6

No unified linting tools such as pylint for python

▶ SQL is NOT case sensitive and ignores whitespace
▶ It is easy to write unreadable code

Always assume that the code you write today will be inherited by a
murderous psychopath who knows where you live!

6All of this advice comes directly from Dr. Konstantin Golyaev’s slides.

Use Consistent Indentation/Breaks

SELECT <X>
FROM <A>
WHERE <TRUE>

not

SELECT <X> FROM <A> WHERE <TRUE>

One Column Per Line

SELECT
a

,b
,c
FROM <A>
WHERE <TRUE>

not

SELECT a,b,c
FROM <A>
WHERE <TRUE>

Why put the comma first?

Aligning Column Names

Align column names with manual spaces

SELECT
short_column_name AS col1

,longer_column_name AS col2,
,longest_column_name AS col3,
,short_column_name + 2 * 3 AS col4
FROM <A>
WHERE <TRUE>

Nesting Subqueries

If nesting subqueries, use consistent indentation

SELECT
a

,b
FROM (

SELECT
c
,d
FROM <A>
WHERE <TRUE>

)

Additional Suggestions

Additional suggestions:

▶ Capitalize operators, such as SELECT, FROM, WHERE, etc
▶ Use snake_case for naming columns and subqueries
▶ Avoid using spaces in names
▶ Adopt aliases for all tables used, even if only using one table
▶ Less rewriting to do when (usually not if) you add a second table
▶ Popular approach is to use first letters of words in table names, such

as ct for customer_transactions

Managing a sqlite Database

CSV to Database

If you have CSV files, you can create a database like this:

Listing 1 create_db.py

engine = create_engine("sqlite:////Users/hlukas/git/personal_website/static/econ-481/data/auctions.db")

bids = pd.read_csv('/Users/hlukas/Google Drive/Raw Data/goodwill/final_data/the north face/bidding_data.csv')
items = pd.read_csv('/Users/hlukas/Google Drive/Raw Data/goodwill/final_data/the north face/item_data.csv')

items_small = items.sample(500)
bids_small = bids.loc[bids['itemId'].isin(items_small['itemId'])]

bids_small.to_sql(con=engine, name='bids', if_exists='replace')
items_small.to_sql(con=engine, name='items', if_exists='replace')

Inserting Data Into Table

Listing 2 update_db.py

from sqlalchemy.ext.declarative import declarative_base

engine = create_engine(f'sqlite:///{path}')
Base = declarative_base()
Base.metadata.create_all(engine)

items = pd.read_csv('/Users/hlukas/Google Drive/Raw Data/goodwill/final_data/the north face/item_data.csv')

items_small = items.sample(500)

items_small.to_sql(con=engine, name='items', if_exists='append')

Using sqlalchemy

Avoiding Queries
We don’t really need to write SQL if we don’t want to to use the package:

from sqlalchemy import MetaData, Table, select
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine(f'sqlite:///{path}')
Base = declarative_base()
Base.metadata.reflect(engine)
bids = Base.metadata.tables['bids']
query = select(bids.c.itemId, bids.c.bidAmount)\

.where(bids.c.bidAmount==10)\

.limit(5)

with Session(engine) as s:
print(pd.DataFrame(s.execute(query)))

itemId bidAmount
0 177106026 10.0
1 177963226 10.0
2 178438915 10.0
3 181622497 10.0
4 179719241 10.0

Group Operations
from sqlalchemy import func, distinct

query = select(
bids.c.itemId,
func.count(distinct(bids.c.bidderName)

).label('n_bidders'))\
.group_by(bids.c.itemId)

with Session(engine) as s:
print(pd.DataFrame(s.execute(query)))

itemId n_bidders
0 165561698 1
1 170983900 1
2 172998011 2
3 173907435 1
4 174445924 3
..
167 182760698 1
168 182777527 1
169 182883873 2
170 182894197 1
171 182925212 2

[172 rows x 2 columns]

Distributed Computing

Distributed Computing and SQL

▶ One benefit of knowing SQL is that it gives us access to database
solutions that facilitate parallelized operations

▶ For example, IBM Netezza or Spark
▶ If our data is big, having the database parallelize operations makes

our lives much easier

Non-Parallel Computing

▶ Simple example
▶ I have the vector [1,2,3,4,5]
▶ I want to square each element

▶ This requires five computations
▶ Suppose each computation takes 𝑥 seconds
▶ If I run this computation on one “computer”, it will take roughly 5𝑥

seconds to compute

Parallel Computing

▶ Suppose now I have five computers available
▶ If the “overhead” to coordinate the tasks is 𝑡 (sending out the

instructions and getting back the results), then parallel computing is
an improvement if

5𝑥 ≥ 𝑥 + 𝑡 ⟺ 𝑡 ≤ 5

Parallel Computing

▶ Netezza and Spark (and many others) handle a lot of this on their
own

▶ What should we consider outside of the overhead cost when
considering running code in parallel?

▶ Is the task actually parallelizable?
▶ How many cores should I allocate to the task?

Appendix

Luke Wylie

	SQL Background
	Accessing a Database in Python
	Queries
	Window Functions
	Creating Columns
	Database Operations
	Subqueries
	Do As I Say, Not As I Do
	Managing a sqlite Database
	Using sqlalchemy
	Distributed Computing
	Appendix

