Web Scraping

Lukas Hager

2024-04-23

Learning Objectives

P Understand the appropriate use of web scraping as a tool

P Know how to use the requests module to access a page's HTML
P Use BeautifulSoup to parse HTML

P Learn to inspect pages and understand how to best extract data

Ethics

Is Web Scraping Legal?

Ignorantia juris non excusat.

Is Web Scraping Legal?

Ignorantia juris non excusat.

P Probably

Is Web Scraping Ethical?

P That depends

P Is the data that you're scraping publicly available?

P Are you scraping to sell the data?

P> Are you scraping to make money off of using the data otherwise?
P Are you disrupting use of the site by others?

P Check out robots.txt file if it exists

P Guide for Google's and Yahoo's crawlers
P Newly, also for ChatGPT and other LLMs

Basics

What is Web Scraping?

P Acquiring data from a website programmatically
P> Imagine copy-pasting tabular data from webpages, but using code
P Very useful for creating datasets that are directly of interest

Basic Goal

P We want to ingest HTML from a page and return a dataframe of
the data that we want from that page

requests

P Python has a built-in module for accessing webpages
P> Here, we're going to access Yahoo's webpage of Apple's stock price
history
P This is hosted on my website so we don't get in trouble

import requests

req_obj = requests.get(
'https://lukashager.netlify.app/econ-481/data/yahoo_apple
)

status_code

A status_code of 200 means that your request was successful

req_obj.status_code

200

ok

You can more directly make sure the request was successful with the ok
attribute

req_obj.ok

True

Content

What did requests actually give us? The HTML of the site we requested:

req_obj.text [:2000]

'<!DOCTYPE html>\n<!-- saved from url=(0045)https://finance.yaho

HTML

P If we request a webpage, we're going to get back the page’'s HTML
code

P> If the site is very simple, the HTML generates the full output
(imagine really old MS Paint websites)

P Now, normally there are scripts that also run within the page and
render objects or request additional data — can make things tricky

HTML Structure

A very basic piece of HTML might look like this:

<div>
<h4> This is a heading </h4>
<p> This is a sentence </p>
</div>

HTML Tables

We often care about tables when web scraping — they look like this:

<table>
<thead>
<tr>
<td> a column </td>
<td> another column </td>
</tr>
</thead>
<tbody>
<tr>
<td> 1 </td>
<td> 2 </td>
</tr>
</tbody>
</table>

a column another column

1 2

BeautifulSoup

P A library that we can use to process HTML more easily
P> Facilitates searching for specific elements in a webpage

prettify()

We can use BeautifulSoup to make the page’'s HTML more nicely
formatted and readable — we won't actually run the command here since
the output is quite large.

from bs4 import BeautifulSoup

soup = BeautifulSoup(req_obj.text)
print(soup.prettify()) this would print formatted HTML

Searching in the HTML

P We only want some of the HTML — how should we figure out what
we want and where it is?

P Easiest way: using Chrome, press Ctrl + Shft + C on PC or Cmd +
Shft + C on Mac

P Alternatively (still in Chrome) right click on the element you care
about and click “Inspect”

Finding table in BeautifulSoup

BeautifulSoup allows us to search for specific HTML tag by name — if
there's only one table in the page, using find with the tag's name should
work well

table_obj = soup.find('table')

Making this Usable

P We have a thead tag

P Represents the headers of the table
P> We then have tbody tag

P Represents the table content

Getting the Headers

table_obj.find('thead') .find_all('th')

[<th class="svelte-talt6m">Date </th>,

<th class="svelte-talt6m">0Open </th>,

<th class="svelte-taltém">High </th>,

<th class="svelte-taltém">Low </th>,

<th class="svelte-talt6m">Close <span class="container svelte-u
<th class="svelte-talt6m">Adj Close <span class="container svel
<th class="svelte-taltém">Volume </th>]

Converting BeautifulSoup to List

headers = [x.text for x in table_obj.find('thead').find_all("

headers
['Date ',
'Open ',
'High ',
'Low ',

'Close Close price adjusted for splits. ',
'Adj Close Adjusted close price adjusted for splits and divi
'Volume ']

Converting BeautifulSoup to List

headers = [x.text for x in table_obj.find('thead').find_all("

headers
['Date ',
'Open ',
'High ',
'Low ',

'Close Close price adjusted for splits. ',
'Adj Close Adjusted close price adjusted for splits and divi
'Volume ']

Ugly, but usable!

Making Headers Prettier

import re
headers_pretty = [
re.findall (' [A-Za-z]+\s?[A-Za-z]+(?=\s+)', x)[0] for x in

]
headers_pretty

['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']

Exercise: Getting Table Contents

Use a similar approach to get the contents of the table using
BeautifulSoup. Hint: the HTML tag for the body is tbody, the tag for
rows is tr, and the tag for elements is td.

Solutions: Getting Table Contents

rows = table_obj.find('tbody').find_all('tr')
data_list = [[item.text for item in row.find_all('td')] for r
data_list[:2]

[['Mar 25, 2024',
'170.53",
'171.94"',
'169.45"',
'170.85"',
'170.85"',
'53,895,981'],

['Mar 22, 2024',
'171.76",
'173.05"',
'170.06"',
'172.28",
'172.28",
'71,106,600']1]

Putting It Together

import pandas as pd

df = pd.DataFrame (
data = data_list,

columns = headers_pretty

) .set_index('Date')
print (df .head(10))

Open High
Date
Mar 25, 2024 170.53 171.94
Mar 22, 2024 171.76 173.05
Mar 21, 2024 177.05 177.49
Mar 20, 2024 175.72 178.67
Mar 19, 2024 174.34 176.61
Mar 18, 2024 175.57 177.71
Mar 15, 2024 171.17 172.62
Mar 14, 2024 172.91 174.31
Mar 13, 2024 172.77 173.19

Mavw 19 OSNON 4172 1K 17N N

169
170
170
175
173
173
170
172

170
474

Low

.45
.06
.84
.09
.03
.52
.29
.05

.76
N4

Close Adj Close

170.
172.
.37
178.
.08
173.
172.
173.
171.

171

176

472

85
28

67

72
62
00

13
~Na

170
172
171

176

4172

.85
.28
.37
178.
.08
173.
172.
173.
171.

67

72
62
00

13
)

Vol

53,895,
71,106,
106,181,
53,423,
55,215,
75,604,
121,664,
72,913,

52,488,
EQ 9NF

Faster Solution (If Possible)

print(pd.read_html(req_obj.text) [0] .head(10))

Date Open High Low \
Mar 25, 2024 170.53 171.94 169.45
Mar 22, 2024 171.76 173.05 170.06
Mar 21, 2024 177.05 177.49 170.84
Mar 20, 2024 175.72 178.67 175.09
Mar 19, 2024 174.34 176.61 173.03
Mar 18, 2024 175.57 177.71 173.52
Mar 15, 2024 171.17 172.62 170.29
Mar 14, 2024 172.91 174.31 172.05
Mar 13, 2024 172.77 173.19 170.76
Mar 12, 2024 173.15 174.03 171.01

© 00 N Od WN - O

Close Close price adjusted for splits. \

0 170.85
1 172.28
2 171.37
3 178.67
N 470 NO

When Does pd.read_html Work?

P If you have a simple <table> tag, pd.read_html will probably work

P Note that the column names are still ugly — pd.read_html will
follow our approach above

P> Note that in this specific application, there are plenty of sites that
allow direct CSV download of stock data, so scraping is superfluous

Harder Scraping Problem

Baseball Reference

gunnar = requests.get('https://www.baseball-reference.com/pla
gunnar.status_code

200

Baseball Reference

gunnar = requests.get('https://www.baseball-reference.com/pla
gunnar.status_code

200

Let's get the “Advanced Batting” table

Find “Advanced Batting”

There are a lot of tables on the page

gunnar_bs = BeautifulSoup(gunnar.text)
len(gunnar_bs.find_all('table'))

Find “Advanced Batting”

There are a lot of tables on the page

gunnar_bs = BeautifulSoup(gunnar.text)
len(gunnar_bs.find_all('table'))

Huh?

Use pandas

pd.read_html (gunnar.text)

[Date
2024-05-12
2024-05-11
2024-05-10
2024-05-08
2024-05-07

> W N - O

ROE BOP
0

S W N = O
o O O O
[=

-0.
0.
0.
0.

-0.

Tm Unnamed: 2

BAL
BAL
BAL
BAL
BAL

WPA
095
145
076
040
096

all
0.93
1.83
0.77
1.61
0.92

[5 rows x 30 columns],
Year
0 2019

4 YN\ A4

NaN
NaN
NaN
Q
Q

Opp
ARI
ARI
ARI
WSN
WSN

cWPA
-0.07%
0.10%
0.06%
0.03%
-0.07%

Age

Result
L 2-9

W 5-4 (11)

W 4-2

W 7-6 (12)

acLI
1.08
2.10
0.92
1.88
1.10

L 0-3

RE24
-0.998
1.332
0.817
0.598
-0.876

Tm
BAL-min

AT v =

Pos
SS
SS
SS
SS
SS

PO

O PN~ N

N N D -

AB

SO WD

ON P F~P,OX

ON -, NOm

Lg
Rk

AN

id tag

gunnar_bs.find_all('div', {'id': 'div_batting_advanced'})

(]

id tag

gunnar_bs.find_all('div', {'id': 'div_batting_advanced'})

(]

Huh?

Search the Raw HTML

re.findall('Advanced Batting', gunnar.text)

['Advanced Batting',
'Advanced Batting',
'Advanced Batting',
'Advanced Batting',
'Advanced Batting']

Search the Raw HTML

re.findall('Advanced Batting', gunnar.text)

['Advanced Batting',
'Advanced Batting',
'Advanced Batting',
'Advanced Batting',
'Advanced Batting']

P So in the HTML there is an Advanced Batting table somewhere —
it's just being stored in a bizarre format.
P> At this point, best to just inspect the raw HTML

Getting Tables in Comments

We know that tables are sneakily hidden in comments — how can we get
around this?

Getting Tables in Comments

We know that tables are sneakily hidden in comments — how can we get
around this?

all_tables = re.findall(
'"\<table.*?7\</table\>',
gunnar.text,
flags=re.DOTALL

)

len(all_tables)

a7

Get The Table We Care About

adv_batting = [x for x in all_tables if 'batting_advanced' in
len(adv_batting)

Use pd.read_html

from io import Stringl0 # used to wrap raw text passed to pan

pd.read_html (StringI0(adv_batting[0]))

[Unnamed: 0_level O Unnamed: 1_level O Unnamed: 2_level O Unna

> W N -, O

> W NN E~- O

Year
2022
2023
2024
3 Yrs

MLB Averages

Batting
rOBA Rbat+
0.348 128
0.349 125
0.395 159
0.358 131
0.320 100

BAbip
0.333
0.306
0.300
0.309
0.293

O O O O O

Age
21
22
23
3 Yrs

MLB Averages

IS0

.181
.234
.297
.238
.158

Batting Ratios
HR%
3.0%
4.5Y%
6.8%
4.7%
3.0%

Tm
BAL
BAL
BAL

3 Yrs

MLB Averages

S0Y
25.8Y
25.6%
25.6%
25.6Y%
22.6Y%

. Batted

Baseball Reference is Tricky

This behavior is driven by the site identifying that we're a bot, not a
human — the HTML they serve to a human works great:

human_tables = pd.read_html('https://lukashager.netlify.app/e
len(human_tables)

31

Baseball Reference is Tricky

This behavior is driven by the site identifying that we're a bot, not a
human — the HTML they serve to a human works great:

human_tables = pd.read_html('https://lukashager.netlify.app/e
len(human_tables)

31
To get the table we want, we should specify the match keyword
pd.read_html(

'https://lukashager.netlify.app/econ-481/data/gunnar_hend
match = 'Oppo%'

[Unnamed: 0_level_O Unnamed: 1_level_O Unnamed: 2_level_O Unna

Year Age Tm
0 2022 21 BAL
1 2023 22 BAL
2 2 Yrs 2 Yrs 2 Yrs

Using APIs

Data Population on Page

P It's possible that a page is sending a request itself to get the data
that it uses to populate a page

P If possible, it's more efficient to try to request that API directly
instead of scraping the HTML

P Can sometimes be hard — depending on the API, you may need to
authenticate or pass cookies

Western States
P The oldest and most prestigious ultramarathon in the United States
P 100 miles from Olympic Valley, CA to Auburn, CA

P> Used to be a horse race
P Gordy Ainsleigh ran it in 24:42 in 1974

Figure 1: Gordy Ainsleigh, courtesy of Western States 100

Western States Results

Stored in tabular format — can we use pd.read_html?

pd.read_html('https://ultrasignup.com/results_event.aspx?did=

[0 1 2 3
0 NaN NaN NaN NaN
1 2023.0 2022.0 2021.0 2020.0
2 2019.0 2018.0 2017.0 2016.0
3 2015.0 2014.0 2013.0 2012.0
4 2011.0 2010.0 2009.0 2007.0
5 2006.0 2005.0 2004.0 2003.0
6 2002.0 2001.0 2000.0 1999.0
7 1998.0 1997.0 1996.0 1995.0
8 1994.0 1993.0 1992.0 1991.0
9 1990.0 1989.0 1988.0 1987.0
10 1986.0 1985.0 1984.0 1983.0
11 1982.0 1981.0 1980.0 1979.0
12 1978.0 1977.0 1976.0 1974.0
13 NaN NaN NaN NaN]

https://ultrasignup.com/results_event.aspx?did=97204

Western States Results

Stored in tabular format — can we use pd.read_html?

pd.read_html('https://ultrasignup.com/results_event.aspx?did=

[0 1 2 3
0 NaN NaN NaN NaN
1 2023.0 2022.0 2021.0 2020.0
2 2019.0 2018.0 2017.0 2016.0
3 2015.0 2014.0 2013.0 2012.0
4 2011.0 2010.0 2009.0 2007.0
5 2006.0 2005.0 2004.0 2003.0
6 2002.0 2001.0 2000.0 1999.0
7 1998.0 1997.0 1996.0 1995.0
8 1994.0 1993.0 1992.0 1991.0
9 1990.0 1989.0 1988.0 1987.0
10 1986.0 1985.0 1984.0 1983.0
11 1982.0 1981.0 1980.0 1979.0
12 1978.0 1977.0 1976.0 1974.0
13 NaN NaN NaN NaN]

https://ultrasignup.com/results_event.aspx?did=97204

Network Tab in Chrome

P This shows what a webpage is doing as it loads
P For example, we can see the images it loads, the scripts it deploys
P Importantly: can see the APIs it requests
P> In this case, we see that it's requesting a json that looks like what
we want

Network Tab json Request

1 "14", city:

444444_25
son?_search=false&nd=171...

jgueryvalidate.min.js

Figure 2: The JSON

Requesting Directly

If the page makes this request, it stands to reason that we can as well
url_2023 = 'https://ultrasignup.com/service/events.svc/result

ws_req = requests.get(url_2023)
ws_req.ok

True

Passing json to DataFrame

print (pd.DataFrame(ws_req.json()))

> W NDE-e O

378
379
380
381
382

O N~ O

age
26
31
29
38
30
40
39
34
70
45

age_rank agegroup

0

O O O O

O O O O O -

20-29
30-39
20-29
30-39
30-39
40-49
30-39
30-39

70+
40-49

bib
34

19
419

235
165

firstname formattime gender
15:13:48
15:47:27
15:56:17

AC.C7.49N

Adam
Hayden
Arlen

Ly o R

M
M
M

\

city distance_time dr

Missoula
Cedar City
Massillon
Portland
Boulder
London
Sonneberg
Masevaux
Bend
Peterborough

lastname
Peterman
Hawks
Glick

o PR

O O O O O

O O O O O -

participant_id p
1854799
2310798
2392278

NONONDNYON N

Scraping Multiple Pages

Data Stored on Multiple Pages

P It's uncommon that we get everything we need from one page
P At that point, unclear what the value of scraping is
P Often have to iterate over multiple pages and combine results

Scraping Multiple Years of WS Results

P Say we wanted results from 2022 and 2023

P Inspecting our URL leads us to believe that all we need to change is
the event ID

P We can grab the 2022 and 2023 IDs:

ev_ids = ['87878', '97204']

Plugging Into API

Warning

ALWAYS put breaks in your code. If you do not, you may crash the
site and get into serious trouble.

1 import time

3 df_list = []
4 for ev_id in ev_ids:

5 r = requests.get(

6 f'https://ultrasignup.com/service/events.svc/results/
7)

8 df = pd.DataFrame(r.json())

9 df ['event_id'] = ev_id

10 df_list.append(df)

11 time.sleep(5)

print(pd.concat(df_list) .head(10))

[
w

Getting Event IDs

Kalvin made a great point — how would we get the identifiers
programmatically?

r = requests.get('https://ultrasignup.com/results_event.aspx?
bs = BeautifulSoup(r.text)
r.ok

True

Getting the Elements

table = bs.find('table', {'id':'ContentPlaceHolder1l dlYears'}
rows = table.find_all('tr')

elements = [row.find_all('td') for row in rows]

years = [y.text.strip() for x in elements[1:-1] for y in x]
links = [y.find('a') ['href'] for x in elements[1:-1] for y in
ids = [re.findall('\d+', x)[0] for x in links]

Putting Together

© 00 N O d WN - O

=
= O

12
13
14
15

4 00

print(pd.DataFrame({'year': years, 'link': links, 'ev_id': id

year
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007

[aYaYaY~ad

/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.
/results_event.

link
aspx?did=97204
aspx?did=87878
aspx?did=79446
aspx?7did=71208
aspx?did=61359
aspx?did=51243
aspx?did=41765
aspx?did=34773
aspx?7did=30033
aspx?did=24962
aspx?did=17746
aspx?did=14050
aspx?7did=10804

/results_event.aspx?did=5752
/results_event.aspx?did=4742
/results_event.aspx?did=771

Y P T

AAAAA d e ™ A2 A—CT7NLC

ev_id
97204
87878
79446
71208
61359
51243
41765
34773
30033
24962
17746
14050
10804
5752
4742
771

C7NC

Authentication

Problem: Sites Recognize Bots

P We've seen a few times that websites will recognize that we're not
people
P This is due to a few possible reasons:
P Our requests don't have payloads that indicate that we're humans
P There's some sort of human verification on the page

P The former we can resolve — the latter, not so much

Examples

P Baseball Reference hides their data in comments
P UltraSignup hides their data entirely

Potential Solution: Authenticate

P Some sites will return different HTML to scrapers depending on
whether or not the scraper is an authenticated account
P> In this case, we can do the following:

1. Send a POST request to the site to authenticate
2. Use a GET request to get the data from the site/API

Issue

P | don’t want to hardcode any of my passwords into this presentation
P | don't have a good example where | can create a throwaway account

Very Simple — Olympus

P Thanks to Real Python there's a practice login page located here
P We can inspect the form and see what the POST request needs to
look like to authenticate

https://realpython.com/
http://olympus.realpython.org/login

Exercise: Olympus

Find the POST request that occurs on this page when you log in using
username “zeus” and password “ThunderDude”. Remember to use
Chrome and use CTRL+SHIFT+C.

http://olympus.realpython.org/login

Olympus Headers

X Headers Payload Preview Response |Initiator >>

v General

Request URL: http://olympus.realpython.org/login
Request Method: POST

Status Code: @ 303 See Other

Remote Address: 54.196.16.164:80

Referrer Policy: strict-origin-when-cross-origin

Figure 3: Headers

Olympus Payload

X Headers Payload Preview Response Initiator >>

vForm Data view source view URL-encoded

Zeus

ThunderDude

Figure 4: Payload

Constructing the Request

This is all we need to get the HTML behind the login:

headers = {'user': 'zeus', 'pwd': 'ThunderDude'}
r = requests.post(
'http://olympus.realpython.org/login',
data = headers

Exercise: Extracting Links

Use BeautifulSoup to extract all the links from the logged-in Olympus
page.

Solutions: Extracting Links

We can use BeautifulSoup's find_all with the a tag.

olympus_bs = BeautifulSoup(r.text)
[x['href'] for x in olympus_bs.find_all('a')]

['/profiles/aphrodite', '/profiles/poseidon', '/profiles/dionysu

UW Economics Database

Goal (Scraping Non-Tabular Data)

We want to list every graduate student in Economics at UW as well as
whatever data the Department of Economics makes publicly available
about them.

Exercise: Strategy

Come up with the strategy we should use to accomplish this task. Don't
write any code, but figure out what pages would be helpful, and think
about what sort of code we'll need to write.

Approach

1. List all of the links on this page
2. For each link, extract all of the relevant data from wherever it's
stored.

https://econ.washington.edu/people/graduate-student

Step 1

rl = requests.get('https://econ.washington.edu/people/graduat
assert rl.ok
rl_bs = BeautifulSoup(rl.text)

To get all the links, we could try what we did before:

links = rl1_bs.find_all('a')
links

[<a class="visually-hidden focusable skip-link" href="#main-cont
Skip to main content

,

<div class="w-logo"><svg aria-labelledby="W_Title" data-name="W
<div class="university-wordmark show-for-medium-up"><svg aria-1
,
<a class="artsci-link show-for-medium-up" href="https://artsci.
<a data-drupal-link-system-path="node/636" href="/support-us" t
Directories,

DV TR . S | | TR R S Ay S, DAY JUUR | BT SR | I | RN 7, PRy e

Cutting Down to Useful Links

url_pattern=re.compile('https://econ.washington.edu/people/[a
links = [x['href'] for x in rl_bs.find_all('a', {'href': url_;
links[:5]

['https
'https
'https
'https
'https

://econ.
://econ.

://econ

://econ

washington.
washington.
.washington
://econ.

edu/people/amre-abken',
edu/people/afsana-adiba’,

.edu/people/shabab-ahmed',
washington.
.washington

edu/people/alireza-aminkhaki',

.edu/people/erik-andersen']

Step 2

Note that the useful data is stored in <div> elements with consistently
formatted class names:

r2 = requests.get('https://econ.washington.edu/people/amre-ab
assert r2.ok
r2_bs = BeautifulSoup(r2.text)

data_dict = {}
field_names = ['email', 'office', 'office-hours', 'biography'
for field_name in field_names:

search_crit = {'class': re.compile(f'field-name-field-{fi

search_obj = r2_bs.find_all('div', search_crit)

if len(search_obj) > 0:

data_dict[field_name] = search_obj[0].text.strip()

data_dict

{'email': 'abken®@uw.edu',
'office': 'Savery Hall 319F',
'office-hours': 'Office Hours\n\nMonday 330-430pm; Wednesday 33
'biography': 'Nazarbayev University'}

DataFrame

dfs
for

=[]

url in links[:5]:

r2 = requests.get(url)

assert r2.ok

r2_bs = BeautifulSoup(r2.text)

data_dict = {}
field_names = ['email', 'office', 'office-hours', 'biogra
for field_name in field_names:

search_crit = {'class': re.compile(f'field-name-field

search_obj = r2_bs.find_all('div', search_crit)

if len(search_obj) > O:

data_dict[field_name] = search_obj[0].text.strip(

name = re.findall('(7<=https://econ.washington.edu/people
dfs.append(pd.DataFrame(data = data_dict, index=[name]))
time.sleep(3)

print (pd.concat(dfs))

email office \

T 1o N ~TIle ~noen Aaarr ~daa Y v o IT~11 929101

Aside: Email Addresses

This is exactly why you should think hard about putting your email
address anywhere on a page — they're extremely easy to extract and
spam.

Cookies

What is a Cookie?

P> Identifiers for a site about your computer

P> For example, keeping you logged in

P Broadly, allowing the site to remember things about your visit

P> Can be useful /necessary to convince a site that your scraper should
be served real stuff

Cookies with requests

We can save cookies from a request with requests.session():
s = requests.session()

google_r = s.get('https://www.google.com')
google_r.ok

True

Look at Cookies

[x for x in s.cookies]

[Cookie(version=0, name='AEC', value='AQTF6Hwzzklpypcw3bzQBd_Nar
Cookie(version=0, name='NID', value='514=cibMpLwvWqw33GdmEqqUWC

Passing These Cookies

You could now use these cookies in a new request with
requests.get(<url>, cookies=s.cookies)

A common use case is authenticating, and then passing the cookies
resulting from the authentication to future requests.

Headless Browsers

Use Cases

P Sometimes if a page is sufficiently complicated (think Amazon), you
can use a headless browser to scrape a page
P This is essentially giving a browser instructions on what to do
P> First, click this button, then type this text in this field, etc.
P Not obvious that it's super valuable in my experience
P If interested, look at Selenium

https://selenium-python.readthedocs.io/

	Ethics
	Basics
	Harder Scraping Problem
	Using APIs
	Scraping Multiple Pages
	Authentication
	UW Economics Database
	Cookies
	Headless Browsers

