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Overview



Numerical Computing

▶ We want to use python as a tool to compute economic models
▶ As python is open-source, many libraries exist for this

▶ numpy: Workhorse library for vectorized computing
▶ pandas: Data cleaning and manipulation
▶ scipy: Statistical computing methods



Learning Objectives

▶ Understand how to use basic commands in numpy
▶ Grasp why vectorization is valuable and how to use it
▶ Leverage these tools to solve problems in Economics



numpy



Why do I care?

▶ You know how to use lists in python
▶ What are vectors if not lists?
▶ What are matrices if not lists of lists?

▶ Why bother using a package when we can do whatever is in the
package ourselves?



You should care!

▶ numpy provides many advantages
▶ Fast: interfaces with C/C++, which makes it much faster than

doing things yourself
▶ Standard: you can trust numpy to do an operation properly, and

more importantly, in a way that’s numerically stable
▶ Broadcasting: numpy gives us the ndarray, which makes matrix and

array operations much easier
▶ Documentation

https://numpy.org/doc/stable/index.html


Vectorization



Basic Problem1

▶ Suppose I want to generate a list of the numbers from 0 to 999,999
and then multiply each value of the list by 2

▶ We can do this with our existing tools

1Taken from Wes McKinney



Basic Problem (Lists)

1 raw_range = range(1000000)
2 raw_list = list(raw_range)
3 %timeit raw_list_x_2 = [x*2 for x in raw_list]

26.7 ms ± 531 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

new_list = []
%timeit for x in raw_list: new_list.append(x*2)

48.9 ms ± 3.41 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

▶ ms is a millisecond
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Basic Problem (numpy)

1 import numpy as np
2

3 raw_array = np.arange(1000000)
4 %timeit raw_array_x_2 = 2 * raw_array

856 µs ± 42.6 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

▶ 𝜇𝑠 is a millionth of a second (𝜇𝑠 = ms / 1000)
▶ numpy solution is roughly 100 times faster than list solution
▶ “Do I have to use np as a prefix?”

▶ Technically no, but do it
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Inner Product

Recall that for two 𝑛 × 1 vectors 𝑥1 and 𝑥2, we can compute the inner
product as

𝑥⊤
1 𝑥2 =

𝑛
∑
𝑖=1

𝑥1𝑖𝑥2𝑖



Inner Product Function (Lists)

1 def inner_product_slow(x_1: list, x_2: list) -> float:
2 """
3 Compute the inner product of two lists
4 """
5

6 inner_prod = 0
7 for i in range(len(x_1)):
8 inner_prod += x_1[i] * x_2[i]
9 return inner_prod

10

11 x_1 = list(range(100))
12 x_2 = list(range(100, 200))
13 %timeit inner_product_slow(x_1,x_2)

5.27 µs ± 86.8 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)



np.inner

1 x_1_arr = np.arange(100)
2 x_2_arr = np.arange(100,200)
3 %timeit np.inner(x_1_arr, x_2_arr)

608 ns ± 5.88 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

np.inner(x_1_arr,x_2_arr) == inner_product_slow(x_1,x_2)

True
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Exercise: Factorial

Can you rewrite our factorial function using numpy? Is it faster? Hint:
look up np.prod.



Solutions: Factorial

%timeit np.prod(np.arange(1,11))

1.69 µs ± 21.9 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

Our old method:

%%time

out = 1
for i in range(1,11):

out *= i

CPU times: user 3 µs, sys: 1 µs, total: 4 µs
Wall time: 2.86 µs
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Matrix Multiplication

If a matrix 𝐴 has dimension 𝑛 × 𝑘 and matrix 𝐵 has dimension 𝑘 × ℓ,
then they can be multiplied and the resulting matrix 𝐴𝐵 has dimension
𝑛 × ℓ and elements given by

⎡⎢⎢
⎣

𝑎11 ... 𝑎1𝑘
𝑎21 ... 𝑎2𝑘

⋮ ⋱ ⋮
𝑎𝑛1 ... 𝑎𝑛𝑘

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑏11 ... 𝑏1ℓ
𝑏21 ... 𝑏2ℓ
⋮ ⋱ ⋮

𝑏𝑘1 ... 𝑏𝑘ℓ

⎤⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

∑𝑘
𝑖=1 𝑎1𝑖𝑏𝑖1 ... ∑𝑘

𝑖=1 𝑎1𝑖𝑏𝑖ℓ
∑𝑘

𝑖=1 𝑎2𝑖𝑏𝑖1 ... ∑𝑘
𝑖=1 𝑎2𝑖𝑏𝑖ℓ

⋮ ⋱ ⋮
∑𝑘

𝑖=1 𝑎𝑛𝑖𝑏𝑖1 ... ∑𝑘
𝑖=1 𝑎𝑛𝑖𝑏𝑖ℓ

⎤
⎥⎥⎥
⎦

▶ Note that this also defines the result of matrix 𝐴 and 𝑘 × 1 vector 𝑐
▶ Further, matrix multiplication is not commutative

▶ Here, we can compute 𝐴 × 𝐵, but not 𝐵 × 𝐴
▶ Even if 𝐴, 𝐵 square (so both have dimension 𝑚 × 𝑚), it is not

guaranteed that 𝐴𝐵 = 𝐵𝐴



Matrix Multiplication in numpy
1 A = np.arange(10).reshape((5,2))
2 B = np.arange(10, 20).reshape((2,5))
3

4 print(f'Matrix A:\n {A}')
5 print(f'Matrix B:\n {B}')
6 print(f'Product:\n {A @ B}')

Matrix A:
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]

Matrix B:
[[10 11 12 13 14]
[15 16 17 18 19]]

Product:
[[ 15 16 17 18 19]
[ 65 70 75 80 85]
[115 124 133 142 151]
[165 178 191 204 217]
[215 232 249 266 283]]



General Note: Reshaping Arrays
▶ numpy works with arrays – think of these as generalized matrices

▶ This encompasses scalars (1 × 1), vectors (𝑛 × 1), matrices (𝑛 × 𝑘),
and higher-dimensional objects (𝑎 × 𝑏 × 𝑐 × ...)

▶ Sometimes we want to change the dimensions of an array
▶ For example, numpy often initializes vectors with dimension 1 (just a

length)

len_one_arr = np.ones(10)
len_one_arr.shape

(10,)

In some contexts, we want this array to have two dimensions – say,
𝑛 × 1. We then have to reshape:

len_two_arr = len_one_arr.reshape((-1,1))
len_two_arr.shape

(10, 1)
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Reshaping using -1 Argument

We can always leave one dimension as -1 to tell numpy to just make that
dimension whatever is necessary to complete the array. For example, if
we wanted an array of dimension 5 × 2 × 1, we could do

len_three_arr = len_one_arr.reshape((-1,2,1))
len_three_arr.shape

(5, 2, 1)

But we’ll fail if we don’t give numpy a divisible number:

len_one_arr.reshape((3,-1))

ValueError: cannot reshape array of size 10 into shape (3,newaxis)
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Indexing in numpy
Define a matrix of random numbers:

my_arr = np.arange(20).reshape((4,5))
my_arr

array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

To access the first row:

my_arr[0,:]

array([0, 1, 2, 3, 4])

To access the first column:

my_arr[:,0]

array([ 0, 5, 10, 15])

To access the first three rows and first two columns:

my_arr[:3,:2]

array([[ 0, 1],
[ 5, 6],
[10, 11]])
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Arithmetic in numpy
Multiplication of a scalar to an array works as expected:

5. * my_arr

array([[ 0., 5., 10., 15., 20.],
[25., 30., 35., 40., 45.],
[50., 55., 60., 65., 70.],
[75., 80., 85., 90., 95.]])

What about dividing a scalar by an array?

1. / my_arr

array([[ inf, 1. , 0.5 , 0.33333333, 0.25 ],
[0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111],
[0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857],
[0.06666667, 0.0625 , 0.05882353, 0.05555556, 0.05263158]])
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Array Operations
What about multiplying an array by an array?

my_arr * my_arr

array([[ 0, 1, 4, 9, 16],
[ 25, 36, 49, 64, 81],
[100, 121, 144, 169, 196],
[225, 256, 289, 324, 361]])

We can also get boolean arrays with element-wise comparisons

my_arr > 10.

array([[False, False, False, False, False],
[False, False, False, False, False],
[False, True, True, True, True],
[ True, True, True, True, True]])
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Boolean Indexing
Let’s create a new array

new_arr = np.array([4,1,0,6,6,2,6,9,6,7]).reshape((5,2))
new_arr

array([[4, 1],
[0, 6],
[6, 2],
[6, 9],
[6, 7]])

If we want to subset to only columns where the sum of the numbers is
more than 10, we can do this directly (more on np.sum soon). First, we
get a boolean array

cond = np.sum(new_arr, axis = 1) > 10
cond

array([False, False, False, True, True])

Then we can index to only the rows where the sum of the elements are
more (or less) than 10

print(new_arr[cond])
print(new_arr[~cond])

[[6 9]
[6 7]]

[[4 1]
[0 6]
[6 2]]
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Exercise: Absolute Value

Compute the absolute value of an arbitrary array (do not use any built-in
absolute value functions).



Solutions: Absolute Value

def my_abs(arr: np.array) -> np.array:
"""Compute absolute value of an array"""

neg_elements = arr < 0
arr[neg_elements] = arr[neg_elements] * -1
return arr

my_abs(np.arange(-3,3))

array([3, 2, 1, 0, 1, 2])

Alternative using handy np.sign function:

np.arange(-3,3) * np.sign(np.arange(-3,3))

array([3, 2, 1, 0, 1, 2])
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Universal Functions



Vectorized Math
numpy has built-in vectorized mathematical functions (called universal
functions, or ufuncs):

np.exp(my_arr)

array([[1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
5.45981500e+01],

[1.48413159e+02, 4.03428793e+02, 1.09663316e+03, 2.98095799e+03,
8.10308393e+03],

[2.20264658e+04, 5.98741417e+04, 1.62754791e+05, 4.42413392e+05,
1.20260428e+06],

[3.26901737e+06, 8.88611052e+06, 2.41549528e+07, 6.56599691e+07,
1.78482301e+08]])

np.sqrt(my_arr)

array([[0. , 1. , 1.41421356, 1.73205081, 2. ],
[2.23606798, 2.44948974, 2.64575131, 2.82842712, 3. ],
[3.16227766, 3.31662479, 3.46410162, 3.60555128, 3.74165739],
[3.87298335, 4. , 4.12310563, 4.24264069, 4.35889894]])
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Aggregating Functions
my_arr

array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

np.sum(my_arr)

190

np.sum(my_arr, axis = 0)

array([30, 34, 38, 42, 46])

np.sum(my_arr, axis = 1)

array([10, 35, 60, 85])
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Why Is This Useful?

▶ These are element-wise operations (we do the function once for each
element of an array)

▶ In python, we’d have to use a for loop (slow!)
▶ numpy has a faster language (C/C++/Fortran) run these loops
▶ Implication: if you can run a calculation as a vectorized numpy

operation using these functions, it will be much faster than a loop.



Binary Universal Functions
Sometimes we have ufuncs that accept two arguments:

a = new_arr[:,0]
b = new_arr[:,1]
print(a,b)

[4 0 6 6 6] [1 6 2 9 7]

np.maximum(a,b)

array([4, 6, 6, 9, 7])

Note that this is a contrived example (that is, splitting the array into two
separate arrays and using np.maximum)…because we have the np.max
aggregator!

np.max(new_arr, axis = 1)

array([4, 6, 6, 9, 7])



Binary Universal Functions
Sometimes we have ufuncs that accept two arguments:

a = new_arr[:,0]
b = new_arr[:,1]
print(a,b)

[4 0 6 6 6] [1 6 2 9 7]

np.maximum(a,b)

array([4, 6, 6, 9, 7])

Note that this is a contrived example (that is, splitting the array into two
separate arrays and using np.maximum)…because we have the np.max
aggregator!

np.max(new_arr, axis = 1)

array([4, 6, 6, 9, 7])



Binary Universal Functions
Sometimes we have ufuncs that accept two arguments:

a = new_arr[:,0]
b = new_arr[:,1]
print(a,b)

[4 0 6 6 6] [1 6 2 9 7]

np.maximum(a,b)

array([4, 6, 6, 9, 7])

Note that this is a contrived example (that is, splitting the array into two
separate arrays and using np.maximum)…because we have the np.max
aggregator!

np.max(new_arr, axis = 1)

array([4, 6, 6, 9, 7])



Broadcasting



What is Broadcasting?
▶ Suppose we have an array and a vector with a dimension in common:

vec = np.arange(5).reshape((-1,5))
mat = np.ones(15).reshape((-1,5))
print(f'vec shape: {vec.shape}, mat shape: {mat.shape}')

vec shape: (1, 5), mat shape: (3, 5)

We know that we can do matrix multiplication, but what happens if we
try to naively divide?

(mat / vec).shape

(3, 5)

What if we divide in the other direction?

(vec / mat).shape

(3, 5)
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Broadcasted Results
Let’s look at these arrays to try to diagnose what’s happening:

print(vec)
print(mat)
print(mat / vec)

[[0 1 2 3 4]]
[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]

[[ inf 1. 0.5 0.33333333 0.25 ]
[ inf 1. 0.5 0.33333333 0.25 ]
[ inf 1. 0.5 0.33333333 0.25 ]]

print(vec / mat)

[[0. 1. 2. 3. 4.]
[0. 1. 2. 3. 4.]
[0. 1. 2. 3. 4.]]

numpy is willing to “fill in” the values of the vector to turn it into the
same size as the matrix and then do operations element-wise if it thinks
we know what we want.
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Broadcasting Errors

numpy will only broadcast if

1. Arrays have the same number of dimensions, and
2. All but one of the dimensions match.

So this operation fails because the number of dimensions do not match:

mat / np.ones(3)

ValueError: operands could not be broadcast together with shapes (3,5) (3,)



Broadcasting Errors

And this operation fails because the arrays differ across multiple
dimensions:

np.ones((5,2,1)) / np.ones((4,1,1))

ValueError: operands could not be broadcast together with shapes (5,2,1) (4,1,1)

Lesson: if you’re broadcasting, make it clear to numpy what behavior you
want!
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Example: Covariance Matrix

Broadcasting makes calculating the variance/covariance matrix of vector
of random variables easy

draws = np.random.multivariate_normal(
mean = np.arange(6,9),
cov = np.diag(np.arange(1,4)),
size = 1000

)
demeaned_draws = draws - np.mean(draws, axis = 0)
demeaned_draws.T @ demeaned_draws / 1000

array([[ 0.92337133, 0.00848744, -0.08387021],
[ 0.00848744, 2.0970935 , 0.16712617],
[-0.08387021, 0.16712617, 3.22424038]])
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Exercise: Standardizing Features

We now know enough numpy to efficiently “standardize” elements of a
matrix (or more accurately, to rewrite
sklearn.preprocessing.StandardScaler):

𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝜇𝑗
𝜎𝑗

This is useful if your features have different scales for certain models
(i.e. LASSO). Please write a function standardize to do this (that is,
calculate the mean and standard deviation of each column, and return
the array with standardized values).

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html


Solutions: Standardizing Features
def standardize(arr: np.array) -> np.array:

"""
Standardize the features in `arr`
"""

mu_j = np.mean(arr, axis = 0)
sigma_j = np.std(arr, axis = 0)

return (arr - mu_j) / sigma_j

standardize(new_arr)

array([[-0.17149859, -1.31876095],
[-1.88648444, 0.32969024],
[ 0.68599434, -0.98907071],
[ 0.68599434, 1.31876095],
[ 0.68599434, 0.65938047]])

Note here that we are broadcasting.
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Random Number Generation



Random Draws

numpy allows for easy simulation draws. For example, we can draw
100,000 times from a standard normal distribution:

draws = np.random.standard_normal(100000)
print(np.mean(draws), np.std(draws))

-0.00010437185458277056 0.9943332478622053

As noted by McKinney, this procedure is significantly (at least one order
of magnitude) faster than python’s default random module – use
numpy.random!

https://wesmckinney.com/book/numpy-basics#numpy_random
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Seeds

▶ For reproducibility, it’s good practice to set seeds so that you can
regenerate results for random processes

▶ In numpy:

rng = np.random.default_rng(seed=481) # rng = random number generator
rng_draws = rng.standard_normal(100000)
print(np.mean(rng_draws), np.std(rng_draws))

-0.0016440274114192328 1.00077298022399



Exercise: Random?

We’re skeptical that numpy is actually giving us random numbers, so we
want to test it by doing the following procedure 1000 times:

1. Simulate 1000 standard normal random variables.
2. Take the mean of those 1000 simulations.

Armed with our 1000 sample means, we’re going to calculate the mean
and standard deviation of the sample means. What should they be? Do
we get close? Please set a seed for reproducibility.



Solutions: Random?
Via the Central Limit Theorem, we know that the sample mean 𝑥 of 𝑛
i.i.d. random variables with mean 𝜇 is distributed

𝑥 ∼ 𝒩 (𝜇, 𝜎2

𝑛 )

%%time
rng = np.random.default_rng(seed=481)

sample_means = []
for i in range(1000):

sample_means.append(np.mean(rng.standard_normal(size=1000)))

print(np.mean(sample_means), np.std(sample_means))

-2.977436149096266e-05 0.031892612678989775
CPU times: user 8.89 ms, sys: 153 µs, total: 9.05 ms
Wall time: 9.05 ms



Solutions: Random? (Faster)
%%time
rng = np.random.default_rng(seed=481)

random_draws = rng.standard_normal(size=1000*1000).reshape((1000,1000))
sample_means = np.mean(random_draws, axis = 0)

print(np.mean(sample_means), np.std(sample_means))

-2.9774361490963187e-05 0.030131789839109725
CPU times: user 5.87 ms, sys: 722 µs, total: 6.59 ms
Wall time: 6.37 ms

Are these close to the truth?

print(0, np.sqrt(1./1000))

0 0.03162277660168379
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Application: Using numpy For Regressions



Salary Data

Suppose we have data that looks like this:

Salary Experience SAT Score College GPA Master’s Degree
60,000 2 1200 3.2 0
90,000 1 1400 3.8 1
30,000 19 900 2.5 0
200,000 10 1400 3.8 1
150,000 5 1000 3.0 0
30,000 4 1100 3.9 0

We’d like to understand what drives salary. What should we do?



Linear Regression

Given feature (explanatory variables) matrix X and outcome variable 𝑦,
define residuals from the model for a choice of coefficient vector 𝛽 as

𝑒⏟
𝑛×1

= 𝑦⏟
𝑛×1

− X⏟
𝑛×𝑘

𝛽⏟
𝑘×1

Then the coefficients from an OLS (ordinary least squares) regression are
the solution to the problem

min
𝛽

𝑒⊤𝑒



OLS Solution

If X⊤X is invertible, then the solution to the problem has a closed-form
solution given by

̂𝛽 = (X⊤X⏟
𝑘×𝑘

)−1 X⊤⏟
𝑘×𝑛

𝑦⏟
𝑛×1



Loading Data
First, we need to load the data2

X = np.array(
[

[2,1200,3.2,0],
[1,1400,3.8,1],
[19,900,2.5,0],
[10,1400,3.8,1],
[5,1000,3.0,0],
[4,1100,3.9,0]

]
)
y = np.array([60000, 90000, 30000, 200000, 150000, 30000]).reshape(-1,1)

print(X.shape, y.shape)

(6, 4) (6, 1)

2Don’t do this in real life! Using pandas to load from a CSV or another file format.



Calculating Estimator

beta_hat = np.linalg.inv(X.T @ X) @ X.T @ y
beta_hat

array([[ 720.48960622],
[ 114.35428578],
[-18598.07654699],
[ 51613.9979523 ]])

What’s missing?
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Adding Intercept

X_int = np.concatenate(
[

np.ones(X.shape[0]).reshape(-1,1),
X,

],
axis = 1

)
X_int

array([[1.0e+00, 2.0e+00, 1.2e+03, 3.2e+00, 0.0e+00],
[1.0e+00, 1.0e+00, 1.4e+03, 3.8e+00, 1.0e+00],
[1.0e+00, 1.9e+01, 9.0e+02, 2.5e+00, 0.0e+00],
[1.0e+00, 1.0e+01, 1.4e+03, 3.8e+00, 1.0e+00],
[1.0e+00, 5.0e+00, 1.0e+03, 3.0e+00, 0.0e+00],
[1.0e+00, 4.0e+00, 1.1e+03, 3.9e+00, 0.0e+00]])



axis

We do need the axis argument to put the intercept vector in the right
place:

np.concatenate(
[

np.ones(X.shape[0]).reshape(-1,1),
X,

]
)

ValueError: all the input array dimensions except for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 1 and the array at index 1 has size 4



np.r_ and np.c_

If you know that you’re adding rows or columns to a matrix, numpy has
two handy functions to do just that:

np.c_[np.ones(X.shape[0]).reshape(-1,1), X]

array([[1.0e+00, 2.0e+00, 1.2e+03, 3.2e+00, 0.0e+00],
[1.0e+00, 1.0e+00, 1.4e+03, 3.8e+00, 1.0e+00],
[1.0e+00, 1.9e+01, 9.0e+02, 2.5e+00, 0.0e+00],
[1.0e+00, 1.0e+01, 1.4e+03, 3.8e+00, 1.0e+00],
[1.0e+00, 5.0e+00, 1.0e+03, 3.0e+00, 0.0e+00],
[1.0e+00, 4.0e+00, 1.1e+03, 3.9e+00, 0.0e+00]])

Note the brackets (this is technically an indexing routine)
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np.hstack and np.vstack

Alternatively, we can perform the operation with np.hstack:

np.hstack((np.ones(X.shape[0]).reshape(-1,1), X))

array([[1.0e+00, 2.0e+00, 1.2e+03, 3.2e+00, 0.0e+00],
[1.0e+00, 1.0e+00, 1.4e+03, 3.8e+00, 1.0e+00],
[1.0e+00, 1.9e+01, 9.0e+02, 2.5e+00, 0.0e+00],
[1.0e+00, 1.0e+01, 1.4e+03, 3.8e+00, 1.0e+00],
[1.0e+00, 5.0e+00, 1.0e+03, 3.0e+00, 0.0e+00],
[1.0e+00, 4.0e+00, 1.1e+03, 3.9e+00, 0.0e+00]])

Note that we’re passing a tuple here
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Regress With Intercept
beta_hat_int = np.linalg.inv(X_int.T @ X_int) @ X_int.T @ y
beta_hat_int

array([[ 1.75082781e+05],
[-1.22516556e+03],
[-1.49834437e+01],
[-2.62417219e+04],
[ 9.73509934e+04]])

We can check with sklearn (future lectures)

from sklearn.linear_model import LinearRegression
reg_model = LinearRegression(fit_intercept=False).fit(X_int, y)
reg_model.coef_

array([[ 1.75082781e+05, -1.22516556e+03, -1.49834437e+01,
-2.62417219e+04, 9.73509934e+04]])

We can check formally using numpy:

np.allclose(beta_hat_int.flatten(), reg_model.coef_)

True
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Application: Likelihood-Based Estimation Using
numpy



Likelihood Example

▶ Assume that we observe 𝑛 observations (𝑥1, ..., 𝑥𝑛)
▶ Each observation is the number of heads we flipped out of 𝑘 coin

flips
▶ More generally called number of successes from 𝑘 trials

▶ If the flips are i.i.d. (so the observations are i.i.d.), then each of
these counts is drawn from a binomial distribution with parameter 𝑝

▶ How can we calculate this parameter?
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Likelihood Function (Observation)

▶ In our example, the probability of observing ℓ heads from 𝑘 flips is

ℙ(ℓ|𝑝) = (𝑘
ℓ)𝑝ℓ(1 − 𝑝)𝑘−ℓ

▶ To get ℓ successes from 𝑘 (independent) trials, we need
▶ An event with probability 𝑝 (a success) to occur ℓ times
▶ An event with probability 1 − 𝑝 (a failure) to occur 𝑘 − ℓ times
▶ ⟹ the probability of one sequence of successes and failures in 𝑘

trials is 𝑝ℓ(1 − 𝑝)𝑘−ℓ

▶ How many sequences are there?
▶ For example, getting 2 heads in 3 flips can occur 3 ways: HHT,

HTH, THH
▶ Total number of sequences: (𝑘

ℓ)



Likelihood Function (Data)

This means that for a given parameter 𝑝 we can write the probability of
observing our data given 𝑝 as

ℙ(𝑥1, ...𝑥𝑛|𝑝) =
𝑛

∏
𝑖=1

ℙ(𝑥𝑖|𝑝)

It’s often more convenient (and numerically stable) to work with the
logarithm of the likelihood function:

ℒ𝑛(𝑥1, ...𝑥𝑛|𝑝) = log (ℙ(𝑥1, ...𝑥𝑛|𝑝)) =
𝑛

∑
𝑖=1

log (ℙ(𝑥𝑖|𝑝))

This is why it’s important for our observations to be independent!



Maximum Likelihood Estimation

Given a likelihood function, we can define MLE estimator for our example
as the value of 𝑝 that maximizes the probability of observing our data.
Formally, it is the solution to the problem

max
𝑝̂

ℒ𝑛(𝑥1, ...𝑥𝑛| ̂𝑝)

How can we solve this problem?
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Formally, it is the solution to the problem

max
𝑝̂

ℒ𝑛(𝑥1, ...𝑥𝑛| ̂𝑝)

How can we solve this problem?



Solving For ̂𝑝𝑀𝐿𝐸 (Analytical)

𝜕ℒ𝑛(𝑥1, ...𝑥𝑛|𝑝)
𝜕𝑝 =

𝑛
∑
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𝜕 log (ℙ(𝑥𝑖|𝑝))
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𝜕
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) + 𝑥𝑖 log(𝑝) + (𝑘 − 𝑥𝑖) log(1 − 𝑝)}
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Set to zero to find the maximum:
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Using numpy and scipy For MLE
Let’s solve this problem using the closed-form solution and a
computational solution.

import matplotlib.pyplot as plt
k = 100
p = .35
n = 10000
x_i = np.random.binomial(n=k, p=p, size=n)
plt.hist(x_i)
plt.show()
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Analytical Solution

p_mle = (1./n) * np.sum(x_i/k)
p_mle

0.350005



Log-Likelihood Function

def neg_ll(theta: float, data: np.array, k: int) -> float:
"""
Compute the negative (why?) log-likelihood for a
binomial distribution given data and a specific parameter (theta).
The factorial term is omitted (why?)
"""

p_successes = data * np.log(theta)
p_failures = (k-data) * np.log(1-theta)

return -np.sum(p_successes + p_failures)

print(f'Log-Likelihood when we\'re far away: {-neg_ll(.8, x_i, k)}')
print(f'Log-Likelihood when we\'re close: {-neg_ll(.3, x_i, k)}')

Log-Likelihood when we're far away: -1124227.9545703332
Log-Likelihood when we're close: -653233.4315635557



Maximization
import scipy as sp

sp.optimize.minimize(
fun=neg_ll, # the objective function
x0=.25, # starting guess
args=(x_i, k), # additional parameters passed to neg_ll
bounds = ((0,1),), # bounds for the optimization
method = 'Nelder-Mead' # optionally pick an algorithm

)

message: Optimization terminated successfully.
success: True
status: 0

fun: 647449.7342306746
x: [ 3.500e-01]

nit: 15
nfev: 30

final_simplex: (array([[ 3.500e-01],
[ 3.500e-01]]), array([ 6.474e+05, 6.474e+05]))



Why Nelder-Mead?
What happens if we let scipy use its default solver (BFGS, I believe)?

sp.optimize.minimize(
fun=neg_ll, # the objective function
x0=.25, # starting guess
args=(x_i, k), # additional parameters passed to neg_ll
bounds = ((0,1),) # bounds for the optimization

)

message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH
success: True
status: 0

fun: 672201.8665470625
x: [ 2.500e-01]

nit: 1
jac: [-5.334e+05]

nfev: 6
njev: 3

hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>

Be careful!
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Bayes Rule

Recall Bayes Rule:

ℙ(𝐴|𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵) = ℙ(𝐵|𝐴)ℙ(𝐴)

ℙ(𝐵)

Rewriting in a more useful format for our application:

ℙ(𝜃|𝑥1, ..., 𝑥𝑛)⏟⏟⏟⏟⏟⏟⏟
Posterior

= ℙ(𝑥1, ..., 𝑥𝑛|𝜃)ℙ(𝜃)
ℙ(𝑥1, ..., 𝑥𝑛)

∝ ℙ(𝑥1, ..., 𝑥𝑛|𝜃)⏟⏟⏟⏟⏟⏟⏟
Likelihood

ℙ(𝜃)⏟
Prior
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Sampling From Posterior

▶ Suppose we want to sample from the posterior distribution
▶ Hard to do without a functional form for the posterior

▶ Easier question: for two parameters 𝜃1 and 𝜃2, what should their
relative frequency be in my sample?

▶ Equivalently: if 𝜃2 has twice the posterior probability mass/density as
𝜃1, how many draws of 𝜃2 should I have in my sample relative to 𝜃1?



Monte Carlo Simulation

Suppose I have two “candidate” draws for my sample from the posterior,
𝜃1 and 𝜃2. By Bayes Rule, I know the ratio of their posterior probabilities
can be calculated as

ℙ(𝜃1|𝑥1, ..., 𝑥𝑛)
ℙ(𝜃2|𝑥1, ..., 𝑥𝑛) = ℙ(𝑥1, ..., 𝑥𝑛|𝜃1)ℙ(𝜃1)

ℙ(𝑥1, ..., 𝑥𝑛|𝜃2)ℙ(𝜃2) ≡ 𝛼

where 𝛼 is the “acceptance rate”. Then to pick which parameter to
include in our sample, just need to simulate a random variable that will
pick 𝜃1 with probability min{𝛼, 1} and 𝜃2 otherwise.



Intuition

ℙ(𝜃1|𝑥1, ..., 𝑥𝑛)
ℙ(𝜃2|𝑥1, ..., 𝑥𝑛) ≡ 𝛼

▶ What will we choose when ℙ(𝜃1|𝑥1, ..., 𝑥𝑛) > ℙ(𝜃2|𝑥1, ..., 𝑥𝑛)?
▶ What will we choose when ℙ(𝜃2|𝑥1, ..., 𝑥𝑛) > ℙ(𝜃1|𝑥1, ..., 𝑥𝑛)?



Markov Chain
How should we generate 𝜃1 and 𝜃2 if we don’t know what the distribution
looks like?

▶ We want to “wander”, but generally go in the “right” direction
(samples with high posterior probability)

▶ Use a Markov Chain with our acceptance rate
▶ Formally, a Markov Chain is a sequence with “memorylessness”

property

ℙ(𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋0 = 𝑥0) = ℙ(𝑋𝑛 = 𝑥𝑛 ∣ 𝑋𝑛−1 = 𝑥𝑛−1)
▶ That is, only the most recent value in the sequence impacts the next

value in the sequence
▶ For our purposes, 𝜃𝑖 = 𝜃𝑖−1 + 𝜀𝑖 where 𝔼[𝜀𝑖] = 0

▶ Note that

𝑥𝑛 =
𝑛−1
∑
𝑖=0

𝑥𝑖 + 𝜀𝑛 = 𝑥0 +
𝑛

∑
𝑖=1

𝜀𝑖



Exercise: Markov Chain

Generate 1000 draws from a Markov Chain that starts at zero with your
choice of noise term. Set a seed for reproducibility.



Solutions: Markov Chain (Slower)

%%time
rng = np.random.default_rng(seed = 481)

chain = []
x = 0

for i in range(1000):
x += rng.standard_normal()
chain.append(x)

CPU times: user 380 µs, sys: 31 µs, total: 411 µs
Wall time: 405 µs



Exercise: Markov Chain (Faster)

%%time
rng = np.random.default_rng(seed = 481)

chain = np.cumsum(rng.standard_normal(size = 1000))

CPU times: user 165 µs, sys: 76 µs, total: 241 µs
Wall time: 207 µs



Markov Chain Visualized
plt.plot(chain)
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Metropolis-Hastings Algorithm (Simplified)

Put it all together into this (simplified version) of the
Metropolis-Hastings algorithm:

1. Choose starting point (𝜃1) and noise distribution that generates 𝜀𝑖
2. For each of 𝑀 iterations:

i. Generate new candidate point 𝜃′
𝑖 = 𝜃𝑖−1 + 𝜀𝑖

ii. Calculate the likelihood of the data at both parameters,
ℒ(𝜃′

𝑖|𝑥𝑖), ℒ(𝜃𝑖−1|𝑥𝑖)
iii. Calculate acceptance rate 𝛼𝑖 = ℒ(𝜃′

𝑖|𝑥𝑖)
ℒ(𝜃𝑖−1|𝑥𝑖)

iv. Simulate a uniform random variable 𝑢𝑖 on the interval [0,1] – if
𝑢𝑖 < 𝛼𝑖, set 𝜃𝑖 = 𝜃′

𝑖, and if not, set 𝜃𝑖 = 𝜃𝑖−1.
3. Return the sequence 𝜃1, ..., 𝜃𝑀 .



Metropolis-Hastings Implementation
def met_hast(n_iterations: int) -> list:

"""
Run Metropolis-Hastings algorithm for our binomial example.
"""
post_draws = []
theta_old = .5
for i in range(n_iterations):

theta_new = theta_old + np.random.normal(loc = 0, scale = .05)
ll_old = -neg_ll(theta_old, x_i, k)
ll_new = -neg_ll(theta_new, x_i, k)
acceptance_rate = np.exp(ll_new-ll_old)
if np.random.uniform() < acceptance_rate:

post_draws.append(theta_new)
theta_old = theta_new

else:
post_draws.append(theta_old)

return post_draws



Metropolis-Hastings Trace Plot
simulation_draws = met_hast(10000)
print(f'Mean of posterior draws: {round(np.mean(simulation_draws),4)}')
plt.plot(range(10000), simulation_draws)

Mean of posterior draws: 0.35
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Metropolis-Hastings Trace Plot (Remove Burn-In)
print(f'Mean of posterior draws: {round(np.mean(simulation_draws[1000:]),4)}')
plt.plot(range(1000,10000), simulation_draws[1000:])

Mean of posterior draws: 0.35
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Metropolis-Hastings Draws
plt.hist(simulation_draws[1000:])
plt.show()
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