
Introduction to Python and Git

Lukas Hager

2024-03-27



Python Basics



Why python?

“Python is the second best language for everything.”



Python

▶ A multiuse programming language that provides interfaces to almost
anything you’d want to do

▶ In recent years, development of tools like numpy, pandas, and
scikit-learn have made it a formidable choice for data analysis
and cleaning

▶ Many firms use python as their program of choice
▶ Interpreted language



Python Editors

▶ Personal preferences:
▶ Jupyter Notebooks/Anaconda

▶ To open a Jupyter server (from terminal):

jupyter notebook

▶ We (hopefully) have access to a Jupyter instance via UW here.
▶ VS Code

▶ Nice editor with tons of language-specific extensions (like for git,
latex, quarto, ipython, julia, etc.)

https://www.anaconda.com/download
https://jupyter.rttl.uw.edu/2024-spring-econ-481-a/hub
https://code.visualstudio.com/download


Pylint

▶ Companies generally want code to confirm to their stylistic standards
▶ There are general best practices for python code formatting
▶ pylint checks code and ensures that there are no syntax errors or

formatting errors
▶ I will not require linting in this class – but it’s good practice



Python Data Structures



Scalar Data Types1

▶ None: The Python “null” value (only one instance of the None
object exists)

▶ str: String type; holds Unicode strings
▶ bytes: Raw binary data
▶ float: Double-precision floating-point number (note there is no

separate double type)
▶ bool: A Boolean True or False value
▶ int: Arbitrary precision integer

1Taken from Wes McKinney’s Book

https://wesmckinney.com/book/python-basics#tbl-table_python_scalar_types


Strings
We can concatenate strings with +

print('Peanut Butter' + 'Jelly')

Peanut ButterJelly

We can also concatenate a list of strings using the join method

str_list = ['I', 'love', 'UW']
' '.join(str_list)

'I love UW'

We can “format” strings as well with f, which is hugely convenient

month = 'April'
f'The month is {month}.'

'The month is April.'



Strings
We can concatenate strings with +

print('Peanut Butter' + 'Jelly')

Peanut ButterJelly

We can also concatenate a list of strings using the join method

str_list = ['I', 'love', 'UW']
' '.join(str_list)

'I love UW'

We can “format” strings as well with f, which is hugely convenient

month = 'April'
f'The month is {month}.'

'The month is April.'



Strings
We can concatenate strings with +

print('Peanut Butter' + 'Jelly')

Peanut ButterJelly

We can also concatenate a list of strings using the join method

str_list = ['I', 'love', 'UW']
' '.join(str_list)

'I love UW'

We can “format” strings as well with f, which is hugely convenient

month = 'April'
f'The month is {month}.'

'The month is April.'



Testing Types
Sometimes you may want to test the type of a scalar in python. The
canonical test for whether a variable is null:

var = 2
var is None

False

You can always use type:

type(2) is str

False

Can also use isinstance:

isinstance(var, int)

True



Testing Types
Sometimes you may want to test the type of a scalar in python. The
canonical test for whether a variable is null:

var = 2
var is None

False

You can always use type:

type(2) is str

False

Can also use isinstance:

isinstance(var, int)

True



Testing Types
Sometimes you may want to test the type of a scalar in python. The
canonical test for whether a variable is null:

var = 2
var is None

False

You can always use type:

type(2) is str

False

Can also use isinstance:

isinstance(var, int)

True



Lists
Lists are created in brackets, with elements separated by commas:

my_list = ['a', 'b', 'c']
print(my_list)

['a', 'b', 'c']

A powerful tool in python is “list comprehension”, which allows us to
perform an operation on every element of a list:

my_new_list = [x + '_new' for x in my_list]
my_new_list

['a_new', 'b_new', 'c_new']

Note that we concatenated individual strings using the + operator.



Lists
Lists are created in brackets, with elements separated by commas:

my_list = ['a', 'b', 'c']
print(my_list)

['a', 'b', 'c']

A powerful tool in python is “list comprehension”, which allows us to
perform an operation on every element of a list:

my_new_list = [x + '_new' for x in my_list]
my_new_list

['a_new', 'b_new', 'c_new']

Note that we concatenated individual strings using the + operator.



Lists
Lists are created in brackets, with elements separated by commas:

my_list = ['a', 'b', 'c']
print(my_list)

['a', 'b', 'c']

A powerful tool in python is “list comprehension”, which allows us to
perform an operation on every element of a list:

my_new_list = [x + '_new' for x in my_list]
my_new_list

['a_new', 'b_new', 'c_new']

Note that we concatenated individual strings using the + operator.



Exercise: Typing

Use list comprehension to return a list of the types of the elements in the
list

types_list = ['a', 1, 2., False, None]



Solutions: Typing

[type(x) for x in types_list]

[str, int, float, bool, NoneType]



Indexing
If we want the first element of a list:

my_list[0]

'a'

If we want the last element of a list:

my_list[-1]

'c'

If we want the first two elements of a list:

my_list[:2]

['a', 'b']

If we want all but the first two elements of a list:

my_list[2:]

['c']



Indexing
If we want the first element of a list:

my_list[0]

'a'

If we want the last element of a list:

my_list[-1]

'c'

If we want the first two elements of a list:

my_list[:2]

['a', 'b']

If we want all but the first two elements of a list:

my_list[2:]

['c']



Indexing
If we want the first element of a list:

my_list[0]

'a'

If we want the last element of a list:

my_list[-1]

'c'

If we want the first two elements of a list:

my_list[:2]

['a', 'b']

If we want all but the first two elements of a list:

my_list[2:]

['c']



Indexing
If we want the first element of a list:

my_list[0]

'a'

If we want the last element of a list:

my_list[-1]

'c'

If we want the first two elements of a list:

my_list[:2]

['a', 'b']

If we want all but the first two elements of a list:

my_list[2:]

['c']



Dictionaries
Dictionaries are similar to lists, except that individual elements are
named. They’re created as key:value pairs within braces, separated by
commas.

my_dict = {
'string': 'a',
'int': 1,
'list': my_list

}
my_dict

{'string': 'a', 'int': 1, 'list': ['a', 'b', 'c']}

Individual elements can be accessed by their key:

my_dict['string']

'a'



Dictionaries
Dictionaries are similar to lists, except that individual elements are
named. They’re created as key:value pairs within braces, separated by
commas.

my_dict = {
'string': 'a',
'int': 1,
'list': my_list

}
my_dict

{'string': 'a', 'int': 1, 'list': ['a', 'b', 'c']}

Individual elements can be accessed by their key:

my_dict['string']

'a'



Dictionaries
You can access all the keys of a dictionary:

my_dict.keys()

dict_keys(['string', 'int', 'list'])

You can also create dictionaries using list comprehension:

1 list_len = len(my_list)
2 idx_seq = range(list_len)
3 my_new_dict = {x: my_list[x] for x in idx_seq}
4 my_new_dict

{0: 'a', 1: 'b', 2: 'c'}

Remember that python indexes everything starting from 0, not 1!

list_len == max(idx_seq)

False



Dictionaries
You can access all the keys of a dictionary:

my_dict.keys()

dict_keys(['string', 'int', 'list'])

You can also create dictionaries using list comprehension:

1 list_len = len(my_list)
2 idx_seq = range(list_len)
3 my_new_dict = {x: my_list[x] for x in idx_seq}
4 my_new_dict

{0: 'a', 1: 'b', 2: 'c'}

Remember that python indexes everything starting from 0, not 1!

list_len == max(idx_seq)

False



Dictionaries
You can access all the keys of a dictionary:

my_dict.keys()

dict_keys(['string', 'int', 'list'])

You can also create dictionaries using list comprehension:

1 list_len = len(my_list)
2 idx_seq = range(list_len)
3 my_new_dict = {x: my_list[x] for x in idx_seq}
4 my_new_dict

{0: 'a', 1: 'b', 2: 'c'}

Remember that python indexes everything starting from 0, not 1!

list_len == max(idx_seq)

False



Dictionaries

We can also update elements of a dictionary, though we should be a little
careful doing this.

my_dict['string'] = 55
my_dict

{'string': 55, 'int': 1, 'list': ['a', 'b', 'c']}



Tuples
Tuples are arrays of elements, created by separating elements by commas
between parentheses. They’re very similar to lists, but we cannot change
individual elements (immutability).

my_tuple = ('a','b','c')
my_tuple[1] = 'z'

TypeError: 'tuple' object does not support item assignment

One reason that they’re helpful in that they can allow you to define
multiple variables inline simultaneously.

a,b = (1,2)
a+b

3



Tuples
Tuples are arrays of elements, created by separating elements by commas
between parentheses. They’re very similar to lists, but we cannot change
individual elements (immutability).

my_tuple = ('a','b','c')
my_tuple[1] = 'z'

TypeError: 'tuple' object does not support item assignment

One reason that they’re helpful in that they can allow you to define
multiple variables inline simultaneously.

a,b = (1,2)
a+b

3



Loops



For Loops
We often want to perform an operation/function/chunk of code on every
element of a list. For example, we could have used a for loop instead of
list comprehension to create my_new_list:

1 my_newer_list = []
2 for list_element in my_list:
3 my_newer_list.append(list_element + '_new')
4 my_newer_list

['a_new', 'b_new', 'c_new']

What if we wanted to add all the numbers from 1 to 5?

1 my_sum = 0
2 for num in range(1,6):
3 my_sum += num
4 my_sum

15



For Loops
We often want to perform an operation/function/chunk of code on every
element of a list. For example, we could have used a for loop instead of
list comprehension to create my_new_list:

1 my_newer_list = []
2 for list_element in my_list:
3 my_newer_list.append(list_element + '_new')
4 my_newer_list

['a_new', 'b_new', 'c_new']

What if we wanted to add all the numbers from 1 to 5?

1 my_sum = 0
2 for num in range(1,6):
3 my_sum += num
4 my_sum

15



While Loops

Sometimes we don’t know how many times we want to loop, so a for
loop can’t be used. Instead, we want to loop until something happens.
In these cases, we can use while loops. For example, we can solve the
problem

max
𝑛

{
𝑛

∑
𝑖=1

𝑖 ≤ 2024}



While Loops
1 my_sum = 0
2 n = 0
3 while my_sum <= 2024:
4 n += 1
5 my_sum += n
6 n, my_sum

(64, 2080)

Why isn’t this right? How can we fix it?

1 my_sum = 0
2 n = 0
3 while my_sum + (n+1) <= 2024:
4 n += 1
5 my_sum += n
6 n, my_sum

(63, 2016)



While Loops
1 my_sum = 0
2 n = 0
3 while my_sum <= 2024:
4 n += 1
5 my_sum += n
6 n, my_sum

(64, 2080)

Why isn’t this right? How can we fix it?

1 my_sum = 0
2 n = 0
3 while my_sum + (n+1) <= 2024:
4 n += 1
5 my_sum += n
6 n, my_sum

(63, 2016)



While Loops
1 my_sum = 0
2 n = 0
3 while my_sum <= 2024:
4 n += 1
5 my_sum += n
6 n, my_sum

(64, 2080)

Why isn’t this right? How can we fix it?

1 my_sum = 0
2 n = 0
3 while my_sum + (n+1) <= 2024:
4 n += 1
5 my_sum += n
6 n, my_sum

(63, 2016)



if/else
Sometimes we want to have conditional logic in our loops (or in our code
more generally)

a_mixed_list = [1, 5, '2', 4, '12', '02']
out = 0
for i in range(len(a_mixed_list)):

out += a_mixed_list[i]
out

TypeError: unsupported operand type(s) for +=: 'int' and 'str'

1 for i in range(len(a_mixed_list)):
2 if isinstance(a_mixed_list[i], str):
3 out += float(a_mixed_list[i])
4 else:
5 out += a_mixed_list[i]
6 out

32.0

Is that correct?



if/else
Sometimes we want to have conditional logic in our loops (or in our code
more generally)

a_mixed_list = [1, 5, '2', 4, '12', '02']
out = 0
for i in range(len(a_mixed_list)):

out += a_mixed_list[i]
out

TypeError: unsupported operand type(s) for +=: 'int' and 'str'

1 for i in range(len(a_mixed_list)):
2 if isinstance(a_mixed_list[i], str):
3 out += float(a_mixed_list[i])
4 else:
5 out += a_mixed_list[i]
6 out

32.0

Is that correct?



if/else
Sometimes we want to have conditional logic in our loops (or in our code
more generally)

a_mixed_list = [1, 5, '2', 4, '12', '02']
out = 0
for i in range(len(a_mixed_list)):

out += a_mixed_list[i]
out

TypeError: unsupported operand type(s) for +=: 'int' and 'str'

1 for i in range(len(a_mixed_list)):
2 if isinstance(a_mixed_list[i], str):
3 out += float(a_mixed_list[i])
4 else:
5 out += a_mixed_list[i]
6 out

32.0

Is that correct?



elif

Before we had an either/or – using elif, we can add multiple
possibilities:

1 data_list = [10, 20, 30, 15, 25]
2 label_list = ['red', 'green', 'blue', 'red', 'green']
3 red_sum, green_sum, blue_sum = 0,0,0
4 for i in range(len(data_list)):
5 if label_list[i] == 'red':
6 red_sum += data_list[i]
7 elif label_list[i] == 'green':
8 green_sum += data_list[i]
9 else:

10 blue_sum += data_list[i]
11 red_sum, green_sum, blue_sum

(25, 45, 30)



pass

Python’s “do nothing” statement

x = 0
if x < 0:

print("negative!")
elif x == 0:

# TODO: put something smart here
pass

else:
print("positive!")



break

We can exit for loops entirely using break – let’s revisit our earlier sum
problem:

1 my_sum = 0
2 n = 0
3 for i in range(2024):
4 if my_sum > 2024-i:
5 n += i-1
6 break
7 my_sum += i
8 n, my_sum

(63, 2016)



Exercise: Factorial

Write a loop that takes a natural number 𝑛 > 0 and returns 𝑛!, where

𝑛! =
𝑛

∏
𝑖=1

𝑖

If you have time, write a loop that computes the binomial coefficient:

(𝑛
𝑘) = 𝑛!

𝑘!(𝑛 − 𝑘)!



Solution (First Part)

1 n = 5
2 n_fac = 1
3 for i in range(1,n+1):
4 n_fac *= i
5 n_fac

120



Solution (Second Part)
Note that

𝑛!
𝑘!(𝑛 − 𝑘)! =

∏𝑛
𝑖=𝑘+1 𝑖

(𝑛 − 𝑘)!

1 k = 3
2 n_minus_k_fac = 1
3 for i in range(1,n-k+1):
4 n_minus_k_fac *= i
5 n_choose_k = 1
6 for i in range(k+1, n+1):
7 n_choose_k *= i
8 n_choose_k /= n_minus_k_fac
9 n_choose_k

10.0



Functions



Why?

▶ In the second solution we reused code that we already wrote for the
first part

▶ If we do this enough, we’ll make mistakes that are hard to track
down

▶ If we want to repeatedly perform the same operation, we should
write a function



DRY (Don’t Repeat Yourself)

▶ If you’re copy/pasting code, you could probably do something
differently to avoid that

▶ If you find a way to avoid doing so, your code will be better
▶ So: try not to “repeat yourself” in this way



Basic Function Syntax

Functions can be defined very generally in python

1 def square(x):
2 return x**2
3

4 square(2)

4

There are a few improvements that we can make, both for ensuring that
our code runs properly and to make it more readable.



Basic Function Syntax

Functions can be defined very generally in python

1 def square(x):
2 return x**2
3

4 square(2)

4

There are a few improvements that we can make, both for ensuring that
our code runs properly and to make it more readable.



Docstrings

In general, we want other users of our code (or our future selves) to be
able to understand what functions do. This is particularly important later
when we get to classes.

def square(x):
"""
This function takes as input a scalar and outputs the scalar squared.
"""
return x**2

square(2)

4

For such a simple function, this might be superfluous, but get in the
habit of doing it!



Docstrings

In general, we want other users of our code (or our future selves) to be
able to understand what functions do. This is particularly important later
when we get to classes.

def square(x):
"""
This function takes as input a scalar and outputs the scalar squared.
"""
return x**2

square(2)

4

For such a simple function, this might be superfluous, but get in the
habit of doing it!



Function Annotations
Sometimes, it might not be obvious what types of arguments should be
passed to functions. For example, our function square cannot take a
string as its argument. We can help users out by showing what the input
of a function should be and what it will output.

def square(x: float) -> float:
"""
This function takes as input a scalar and outputs the scalar squared.
"""
return x**2

square(2)

4

Many code editors can make use of these annotations when your code is
being used by others.



Function Annotations
Sometimes, it might not be obvious what types of arguments should be
passed to functions. For example, our function square cannot take a
string as its argument. We can help users out by showing what the input
of a function should be and what it will output.

def square(x: float) -> float:
"""
This function takes as input a scalar and outputs the scalar squared.
"""
return x**2

square(2)

4

Many code editors can make use of these annotations when your code is
being used by others.



Multiple Arguments

Functions can take more than one argument. For example, suppose we
wanted to calculate the value 𝑦 corresponding to point 𝑥 on the linear
function 𝑦 = 𝑚𝑥 + 𝑏.

def linear_function(x: float, m: float, b: float) -> float:
"""
Given the slope (m) and intercept (b) of a line, calculate
the y coordinate corresponding to x.
"""
return m*x + b

linear_function(x=3., m=-1., b=0.)

-3.0



Function Defaults
Python makes it very easy to supply default arguments to functions. In
the case below, we provide a default slope of −1 and default intercept of
0.

def linear_function(x: float, m: float=-1, b: float=0) -> float:
"""
Given the slope (m) and intercept (b) of a line, calculate
the y coordinate corresponding to x.
"""
return m*x + b

linear_function(3.)

-3.0

Note that when you define a function, any argument that does not have
a default must be listed before arguments with defaults (so x must be
listed before m and b above).



Function Defaults
Python makes it very easy to supply default arguments to functions. In
the case below, we provide a default slope of −1 and default intercept of
0.

def linear_function(x: float, m: float=-1, b: float=0) -> float:
"""
Given the slope (m) and intercept (b) of a line, calculate
the y coordinate corresponding to x.
"""
return m*x + b

linear_function(3.)

-3.0

Note that when you define a function, any argument that does not have
a default must be listed before arguments with defaults (so x must be
listed before m and b above).



Dates



datetime Import

datetime has a module by the same name, so normally it looks
something like this

from datetime import datetime, date, time, timedelta

If you don’t have access to a package, you can generally install via

pip install datetime



datetime Import

datetime has a module by the same name, so normally it looks
something like this

from datetime import datetime, date, time, timedelta

If you don’t have access to a package, you can generally install via

pip install datetime



Creating a datetime Object

Passing integers to datetime yields a datetime object

dt = datetime(2011, 10, 29, 20, 30, 21)
dt.day

29

dt.minute

30



Creating a datetime Object

Passing integers to datetime yields a datetime object

dt = datetime(2011, 10, 29, 20, 30, 21)
dt.day

29

dt.minute

30



Useful Methods
dt.date()

datetime.date(2011, 10, 29)

dt.time()

datetime.time(20, 30, 21)

We can also format the object into something recognizable:

dt.strftime("%Y-%m-%d %H:%M")

'2011-10-29 20:30'

And we can parse strings into datetime objects:

datetime.strptime("20091031", "%Y%m%d")

datetime.datetime(2009, 10, 31, 0, 0)



Useful Methods
dt.date()

datetime.date(2011, 10, 29)

dt.time()

datetime.time(20, 30, 21)

We can also format the object into something recognizable:

dt.strftime("%Y-%m-%d %H:%M")

'2011-10-29 20:30'

And we can parse strings into datetime objects:

datetime.strptime("20091031", "%Y%m%d")

datetime.datetime(2009, 10, 31, 0, 0)



Useful Methods
dt.date()

datetime.date(2011, 10, 29)

dt.time()

datetime.time(20, 30, 21)

We can also format the object into something recognizable:

dt.strftime("%Y-%m-%d %H:%M")

'2011-10-29 20:30'

And we can parse strings into datetime objects:

datetime.strptime("20091031", "%Y%m%d")

datetime.datetime(2009, 10, 31, 0, 0)



Useful Methods
dt.date()

datetime.date(2011, 10, 29)

dt.time()

datetime.time(20, 30, 21)

We can also format the object into something recognizable:

dt.strftime("%Y-%m-%d %H:%M")

'2011-10-29 20:30'

And we can parse strings into datetime objects:

datetime.strptime("20091031", "%Y%m%d")

datetime.datetime(2009, 10, 31, 0, 0)



Time Differences

dt2 = datetime(2011, 11, 15, 22, 30)
delta = dt2 - dt
delta

datetime.timedelta(days=17, seconds=7179)

dt + delta

datetime.datetime(2011, 11, 15, 22, 30)



Time Differences

dt2 = datetime(2011, 11, 15, 22, 30)
delta = dt2 - dt
delta

datetime.timedelta(days=17, seconds=7179)

dt + delta

datetime.datetime(2011, 11, 15, 22, 30)



Exercise: datetime

Create a list of the date of every day we have class this quarter. You may
ignore holidays.

▶ Hints:
▶ The last day of classes is May 31, 2024
▶ You can create a timedelta object using timedelta(days=...)



Solutions: datetime
monday = datetime(2024, 3, 25)
wednesday = datetime(2024, 3, 27)
week = timedelta(days=7)
class_dates = []

while wednesday < datetime(2024, 5, 31):
class_dates.append(monday)
class_dates.append(wednesday)
monday += week
wednesday += week

[x.strftime("%Y-%m-%d") for x in class_dates]

['2024-03-25',
'2024-03-27',
'2024-04-01',
'2024-04-03',
'2024-04-08',
'2024-04-10',
'2024-04-15',
'2024-04-17',
'2024-04-22',
'2024-04-24',
'2024-04-29',
'2024-05-01',
'2024-05-06',
'2024-05-08',
'2024-05-13',
'2024-05-15',
'2024-05-20',
'2024-05-22',
'2024-05-27',
'2024-05-29']



Importing

Module: file with a .py extension containing Python code

# some_module.py
PI = 3.14159

def f(x):
return x + 2

def g(a, b):
return a + b

To access these values/functions in another file:

import some_module
result = some_module.f(5)
pi = some_module.PI



Importing

Module: file with a .py extension containing Python code

# some_module.py
PI = 3.14159

def f(x):
return x + 2

def g(a, b):
return a + b

To access these values/functions in another file:

import some_module
result = some_module.f(5)
pi = some_module.PI



Alternative Import

from some_module import g, PI
result = g(5, PI)

You can import everything using * (you shouldn’t generally do this)

from some_module import *



Alternative Import

from some_module import g, PI
result = g(5, PI)

You can import everything using * (you shouldn’t generally do this)

from some_module import *



as

import some_module as sm
from some_module import PI as pi, g as gf

r1 = sm.f(pi)
r2 = gf(6, pi)



Git



Version Control

▶ When you use a program like Microsoft Word or Dropbox, you have
version control built in

▶ Ability to revert document or file to a previous version
▶ This is really important for code as well

▶ Imagine you make a bunch of edits to some code to improve
readability

▶ You rerun the code and your results change
▶ Without version control, it’ll take a lot of work to figure out what

changed!



Collaboration

▶ You’ll often be working with other teammates on projects
▶ How do you coordinate editing files to make sure that everyone’s

using the most recent version?
▶ What do you do if two people edit the same line of code?
▶ git has tools to help you do these things



GitHub

▶ I highly recommend using git with GitHub
▶ GitHub is a great place to publicly post your code for potential

employers or collaborators
▶ In addition, you can sign up for the Student Developer Pack for free

▶ Gives you access to Copilot (careful!)
▶ Allows you to make private repositories
▶ Plenty of other goodies

https://github.com/
https://education.github.com/pack


Setting Up a Repository2

1. Set up a GitHub Account/install git
2. In your profile on GitHub’s website, in the upper right-hand corner

of the “Repositories” tab is a green “New” button.
3. Choose a name and description.
4. For this class’s homework, please keep your repositories public.
5. Check the box for adding a README file, and use the Python

.gitignore file.

2Code folder for a project.

https://docs.github.com/en/get-started/getting-started-with-git/set-up-git


Setting Up a Repository

6. Click on “Code” and copy the HTTPS or SSH link (based on how
you set up your profile)

7. In terminal (Mac or Linux) or Git Bash (Windows), run

git clone <the link you copied>

within the folder that will store your code files.



Files in Git

▶ There are two versions of every file – the version that’s in the
remote repository, and your local version of that file (inclusive of
your changes)

▶ Whenever you want to update the file in the remote repository, you
have to do the following:

1. Stage the file for commit
2. Commit the files (and write a message)
3. Pull any edits from the remote
4. Push your edits to the remote



Step 1: Staging Files

▶ You created a new file (or edited an existing file) newfile.py and
want to add it to the remote repository

▶ Basic syntax:

If we created newfile.py, we would stage it for commit via

git add newfile.py

We can add all files that have changed using .:

git add .

We can check that it’s been staged:

git status



Step 2: Commiting the Files

▶ Once the files are staged, we want to write a message explaining
what edits we made to the files that we’ve staged

▶ Basic syntax:

git commit -m "I created a new python file for my repository"



Step 3: Pulling Remote Changes

▶ If there have been any changes to the remote, we want to pull those
down and resolve any conflicts that may exist

▶ Resolving those changes: kind of a pain!

git pull origin main

▶ Advanced: if you’re using branches, replace main with your branch
name:

git pull origin my_branch



Step 4: Push Your Changes

▶ Finally, push your changes to the remote!

git push origin main

▶ Advanced: if you’re using branches, replace main with your branch
name:

git push origin my_branch



Step 3.5: Conflicts
▶ If the remote’s changes and your changes overlap, you need to tell

Git how to resolve this

* branch main -> FETCH_HEAD
3f06dd5..81cf6f5 main -> origin/main

hint: You have divergent branches and need to specify how to reconcile them.
hint: You can do so by running one of the following commands sometime before
hint: your next pull:
hint:
hint: git config pull.rebase false # merge
hint: git config pull.rebase true # rebase
hint: git config pull.ff only # fast-forward only
hint:
hint: You can replace "git config" with "git config --global" to set a default
hint: preference for all repositories. You can also pass --rebase, --no-rebase,
hint: or --ff-only on the command line to override the configured default per
hint: invocation.
fatal: Need to specify how to reconcile divergent branches.



Recommendation
I think it’s generally good to tell Git to merge by default

git config pull.rebase false

Then when we run git pull origin main, we now get:

* branch main -> FETCH_HEAD
Auto-merging my_file.py
CONFLICT (content): Merge conflict in my_file.py
Automatic merge failed; fix conflicts and then commit the result.

Then git status helpfully tells us:

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)
both modified: my_file.py



Fixing the Conflict Manually

If we open my_file.py, Git tells us where the merge issue is and what
the two different files say (here the remote has print(greetings) and
locally we have print('sup'))

<<<<<<< HEAD
print('greetings')
=======
print('sup')
>>>>>>> 81cf6f5ecf31769420f83647af52c870224d4dd2

All we have to do is keep whichever option we want (manually delete
what we don’t want)



Other Options

If we know for sure that we want to keep all the local changes, we can
run

git pull origin main -X ours

And similarly, if we know for sure that we want to keep all the remote
changes, we can run

git pull origin main -X theirs

Warning

This will not have you proceed difference-by-difference – if there are
multiple differences, it will keep all of ours or theirs.



Git Basics (Summary)

▶ If you’re not collaborating, git is quite simple.
▶ git add filename 3 will stage a file for commit
▶ git commit -m "this is my change" will add a commit message
▶ git pull origin branchname will pull the remote changes
▶ git push origin branchname will push your changes to the

remote (on branch branchname)

3If you want to add all files that have changed, use git add .



Branches

▶ Another nice feature of Git is the option to use branches
▶ If you branch off of the main repository, you’ll get a copy of that

code that you can use as a sandbox, and then merge back in if you
want to later

▶ Potential Uses:
▶ Collaboration
▶ When there’s a stable version of the code that you don’t want to

break



Creating a Branch

▶ To create a new branch off of an existing branch:

git checkout -b <new branch name> <old branch name>

▶ To move between branches:

git checkout <branch name>



Merging a Branch

▶ Usually done via a “pull request”
▶ I recommend doing this on GitHub via their GUI


	Python Basics
	Python Data Structures
	Loops
	Functions
	Dates
	Git

